Antibiotic Nalidixic Acid Removal by Activated Carbon Prepared from Keratin Wastes

Article Preview

Abstract:

An activated carbon (AC) was prepared from keratin wastes by potassium hydroxide chemical activation. A number of analytical techniques, including Fourier transform infrared spectroscopy, N2 adsorption-desorption and zeta potential, were used to characterize it. The surface area of AC is 750.6 m2/g and its structure was found to be a well-developed micropore. The pH effect of various experimental parameters on its use to adsorb the antibiotic nalidixic acid (NA) from aqueous solutions has been investigated. If pH was below its pKa, anionic NA and negative surface charges on AC were neutralized by H+. Thereby NA was less water soluble and increased the opportunities for hydrophobic interaction with the surface of AC. The major mechanisms were identified as ion exchange, and hydrophobic and electrostatic interactions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

895-899

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Robberson, A.B. Waghe, D.A. Sabatini, E.C. Butler: Chemosphere Vol. 63 (2006), p.934.

Google Scholar

[2] T.A. Ternes: Water Res. Vol. 32 (1998), p.3245.

Google Scholar

[3] S.B. Levy: Sci. Am. Vol. 278 (1998), p.46.

Google Scholar

[4] A.G. Cabanillas, M.I. Cáceresa, M.A. Cañasa, J.M. Burguillosa, T.G. Díaza: Talanta Vol. 72 (2007), p.932.

Google Scholar

[5] T. Zhang, W.P. Walawender, L.T. Fan, M. Fan, D. Daugaard, R.C. Brown: Chem. Eng. J. Vol. 105 (2004), p.53.

Google Scholar

[6] C.A. Toles, W.E. Marshall, L.H. Wartelle, A. McAloon: Bioresource Technol. Vol. 75 (2000), p.197.

Google Scholar

[7] Z. Hu, M.P. Srinivasan, Y. Ni: Carbon Vol. 39 (2001), p.877.

Google Scholar

[8] Y. Fan, B. Wang, S. Yuan, X. Wu, J. Chen, L. Wang: Bioresource Technol. Vol. 101 (2010), p.7661.

Google Scholar

[9] A.C. Lua, J. Guo: Langmuir Vol. 17 (2001), p.7112.

Google Scholar

[10] A.E. Putun, N. Ozbay, E.P. Onal, E. Putun: Technol. Vol. 86 (2005), p.1207.

Google Scholar

[11] A. Aworn, P. Thiravetyan, W. Nakbanpote: J. Anal. Appl. Pyrol. Vol. 82 (2008), p.279.

Google Scholar

[12] V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak: Water Res. Vol. 45 (2011), p.4047.

Google Scholar

[13] M. Zoccola, A. Aluigi, C. Tonin: J. Mol. Struct. Vol. 938 (2009), p.35.

Google Scholar

[14] M. Brebu, I. Spiridon: J. Anal. Appl. Pyrol. Vol. 91 (2011), p.288.

Google Scholar

[15] H.G.M. Edwards, D.E. Hunt, M.G. Sibley: Spectrochim. Acta A Vol. 54 (1998), p.745.

Google Scholar

[16] D.R. Goddard, L. Michaelis: J. Biol. Chem. Vol. 106 (1934), p.605.

Google Scholar

[17] M.J. Horn, D.B. Jones, S.J. Ringel: J. Biol. Chem. Vol. 144 (1942), p.87.

Google Scholar

[18] R.H. Khengar, M.B. Brown, R.B. Turner, M.J. Traynor, K.B. Holt, S.A. Jones: Free Radical Bio. Med. Vol. 49 (2010), p.865.

DOI: 10.1016/j.freeradbiomed.2010.06.013

Google Scholar

[19] R. Tseng, S. Tseng, F. Wu, C. Hu, C. Wang: J. Chin. Inst. Chem. Eng. Vol. 39 (2008), p.37.

Google Scholar

[20] A.H. Basta, V. Fierro, H. El-Saied: Bioresource Technol. Vol. 100 (2009), p.3941.

Google Scholar

[21] F. Wu, R. Tseng, C. Hu: Micropor. Mesopor. Mat. Vol. 80 (2005), p.95.

Google Scholar