Preparation of Lactic Acid by Polymer-Catalyzed Conversion of Maltose in Aqueous Alkaline Media

Article Preview

Abstract:

The preparation of lactic acid (LA) from the conversion of carbohydrates through chemical ways has received much attention as a way of producing platform chemicals from renewable resources, but harsh reaction conditions were usually employed especially when environmentally benign solvent (water) was used as the reaction media. In this work, polymerizates of imidazole and epichlorohydrin ([IMEP]Cl) have been used as catalysts for the conversion of maltose to LA. Several factors, including the temperature, the NaOH concentration, the [IMEP]Cl loading and the maltose concentration, were found to affect LA yield, and the process was optimized by method of orthogonal experiment. The order of significant factors was found to be maltose concentration > temperature > [IMEP]Cl loading > NaOH concentration. The optimum yield of LA was 48.5%. This route provides a new strategy for carbohydrates conversion to produce fine chemicals.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

947-953

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41(2012), 1538-1558.

DOI: 10.1039/c1cs15147a

Google Scholar

[2] S.G. Karp, A.H. gashiyama, P.F. Siqueira, J.C. Carvalho, L.P.S. Vandenberghe, V. Thomaz-Soccol, J. Coral, J.L. Tholozan, A. Pandey and C.R. Soccol, Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale, Bioresour. Technol. 102(2011).

DOI: 10.1016/j.biortech.2010.08.102

Google Scholar

[3] M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B.F. Sels, Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis, Energy Environ. Sci. 6(2013), 1415-1442.

DOI: 10.1039/c3ee00069a

Google Scholar

[4] L.F. Yan and X.Y. Qi, Degradation of cellulose to organic acids in its homogeneous alkaline aqueous solution, ACS Sustainable Chem. Eng. 2(2014), 897-901.

DOI: 10.1021/sc400507s

Google Scholar

[5] Y. Hayashi and Y. Sasaki, Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution, Chem. Commun. 21(2005), 2716-2718.

DOI: 10.1039/b501964h

Google Scholar

[6] D. Garlotta, A literature review of poly (lactic acid), J. Polym. Environ. 9(2001), 63-84.

Google Scholar

[7] K.M. Nampoothiri, N.R. Nair and R.P. John, An overview of the recent developments in polylactide (PLA) research, Bioresource. Technol. 101(2010), 8493-8501.

DOI: 10.1016/j.biortech.2010.05.092

Google Scholar

[8] R.P. John, K.M. Nampoothiri and A. Pandey, Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Appl. Microbiol. Biotechnol. 74(2007), 524-534.

DOI: 10.1007/s00253-006-0779-6

Google Scholar

[9] R. Datta and M. Henry, Lactic acid: recent advances in products, processes and technologies - a review, J. Chem. Technol. Biotechnol. 81(2006), 1119-1129.

DOI: 10.1002/jctb.1486

Google Scholar

[10] A. Corma, S. Iborra and A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107(2007), 2411-2502.

DOI: 10.1021/cr050989d

Google Scholar

[11] P.T. Anastas and M.M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res. 35(2002), 686-694.

DOI: 10.1021/ar010065m

Google Scholar

[12] S. Minakata and M. Komatsu, Organic reactions on silica in water, Chem. Rev. 109(2008), 711-724.

DOI: 10.1021/cr8003955

Google Scholar

[13] M.O. Simon and C.J. Li, Green chemistry oriented organic synthesis in water, Chem. Soc. Rev. 41(2012), 1415-1427.

DOI: 10.1039/c1cs15222j

Google Scholar

[14] J.L. Song, H.L. Fan, J. Ma and B.X. Han, Conversion of glucose and cellulose into value-added products in water and ionic liquids, Green Chem. 15(2013), 2619-2635.

DOI: 10.1039/c3gc41141a

Google Scholar

[15] P. Maki-Arvela, I.L. Simakova, T. Salmi and D.Y. Murzin, Production of lactic acid/lactates from biomass and their catalytic transformations to commodities, Chem. Rev. 114(2013), 1909-(1971).

DOI: 10.1021/cr400203v

Google Scholar

[16] M.S. Holm, Y.J. Pagan-Torres, S. Saravanamurugan, A. Riisager, J.A. Dumesic and E. Taarning, Sn-Beta catalysed conversion of hemicellulosic sugars, Green Chem. 14(2012), 702-706.

DOI: 10.1039/c2gc16202d

Google Scholar

[17] M.S. Holm, S. Saravanamurugan and E. Taarniing, Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts, Science, 328(2010), 602-605.

DOI: 10.1126/science.1183990

Google Scholar

[18] Y.L. Wang, W.P. Deng, B.J. Wang, Q.H. Zhang, X.Y. Wan, Z.C. Tang, Y. Wang, C. Zhu, Z.X. Cao, G.C. Wang and H.L. Wan, Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water, Nat. Commun. 4(2013), 2141.

DOI: 10.1038/ncomms3141

Google Scholar

[19] X.Y. Yan, F.M. Jin, K. Tohji, A. Kishita and H. Enomoto, Hydrothermal conversion of carbohydrate biomass to lactic acid, AIChE J. 56(2010), 2727-2733.

DOI: 10.1002/aic.12193

Google Scholar

[20] L.Z. Kong, G.M. Li, H. Wang, W.Z. He and F. Ling, Hydrothermal catalytic conversion of biomass for lactic acid production, J. Chem. Technol. Biotechnol. 83(2008), 383-388.

DOI: 10.1002/jctb.1797

Google Scholar

[21] C.B. Rasrendra, I.G.B.N. Makertihartha, S. Adisasmito and H.J. Heeres, Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions, Top. Catal. 53(2010).

DOI: 10.1007/s11244-010-9570-0

Google Scholar

[22] H. Kishida, F.M. Jin, X.Y. Yan, T. Moriya and H. Enomoto, Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction, Carbohydr. Res. 341(2006), 2619-2623.

DOI: 10.1016/j.carres.2006.06.013

Google Scholar

[23] R.M. West, M.S. Holm, S. Saravanamurugan, J.M. Xiong, Z. Beversdorf, E. Taarning and C.H. Christensen, Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars, J. Catal. 269(2010), 122-130.

DOI: 10.1016/j.jcat.2009.10.023

Google Scholar

[24] F. de Clippel, M. Dusselier, R.V. Rompaey, P. Vanelderen, J. Dijkmans, E. Makshina, L. Giebeler, S. Oswald, G.V. Baron, J.F.M. Denayer, P.P. Pescarmona, P.A. Jacobs and B.F. Sels, Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts, J. Am. Chem. Soc. 134(2012).

DOI: 10.1021/ja301678w

Google Scholar

[25] F. Chambon, F. Rataboul, C. Pinel, A. Cabiac, E. Guillon and N. Essayem, Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid, Appl. Catal. B Environ. 105(2011).

DOI: 10.1016/j.apcatb.2011.04.009

Google Scholar

[26] A. Charmot and A. Katz, Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: cellobiose and maltose, J. Catal. 276(2010), 1-5.

DOI: 10.1016/j.jcat.2010.08.006

Google Scholar

[27] M. Marzo, A. Gervasini and P. Carniti, Hydrolysis of disaccharides over solid acid catalysts under green conditions, Carbohydr. Res. 347(2012), 23-31.

DOI: 10.1016/j.carres.2011.10.018

Google Scholar

[28] N.T.M. Hai, J. Odermatt, V. Grimaudo, K.W. Kramer, A. Fluegel, M. Arnold, D. Mayer and P. Broekmann, Potential oscillations in galvanostatic Cu electrodeposition: antagonistic and synergistic effects among SPS, chloride, and suppressor additives, J. Phys. Chem. C 116(2012).

DOI: 10.1021/jp2096086

Google Scholar

[29] J. Howarth, K. Hanlon, D. Fayne and P. McCormac, Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels-Alder reaction, Tetrahedron Lett. 38(1997), 3097-3100.

DOI: 10.1016/s0040-4039(97)00554-6

Google Scholar

[30] W.E. Eckles and T.W. Starinshak, U.S. Patent 4, 038, 161. (1977).

Google Scholar

[31] W.A. Rogers and J.E. Woehst, U.S. Patent 3, 320, 317. (1967).

Google Scholar

[32] X. Wu and D.Y.C. Leung, Optimization of biodiesel production from camelina oil using orthogonal experiment, Appl. Energy 88(2011), 3615-3624.

DOI: 10.1016/j.apenergy.2011.04.041

Google Scholar