[1]
P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41(2012), 1538-1558.
DOI: 10.1039/c1cs15147a
Google Scholar
[2]
S.G. Karp, A.H. gashiyama, P.F. Siqueira, J.C. Carvalho, L.P.S. Vandenberghe, V. Thomaz-Soccol, J. Coral, J.L. Tholozan, A. Pandey and C.R. Soccol, Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale, Bioresour. Technol. 102(2011).
DOI: 10.1016/j.biortech.2010.08.102
Google Scholar
[3]
M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B.F. Sels, Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis, Energy Environ. Sci. 6(2013), 1415-1442.
DOI: 10.1039/c3ee00069a
Google Scholar
[4]
L.F. Yan and X.Y. Qi, Degradation of cellulose to organic acids in its homogeneous alkaline aqueous solution, ACS Sustainable Chem. Eng. 2(2014), 897-901.
DOI: 10.1021/sc400507s
Google Scholar
[5]
Y. Hayashi and Y. Sasaki, Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution, Chem. Commun. 21(2005), 2716-2718.
DOI: 10.1039/b501964h
Google Scholar
[6]
D. Garlotta, A literature review of poly (lactic acid), J. Polym. Environ. 9(2001), 63-84.
Google Scholar
[7]
K.M. Nampoothiri, N.R. Nair and R.P. John, An overview of the recent developments in polylactide (PLA) research, Bioresource. Technol. 101(2010), 8493-8501.
DOI: 10.1016/j.biortech.2010.05.092
Google Scholar
[8]
R.P. John, K.M. Nampoothiri and A. Pandey, Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Appl. Microbiol. Biotechnol. 74(2007), 524-534.
DOI: 10.1007/s00253-006-0779-6
Google Scholar
[9]
R. Datta and M. Henry, Lactic acid: recent advances in products, processes and technologies - a review, J. Chem. Technol. Biotechnol. 81(2006), 1119-1129.
DOI: 10.1002/jctb.1486
Google Scholar
[10]
A. Corma, S. Iborra and A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107(2007), 2411-2502.
DOI: 10.1021/cr050989d
Google Scholar
[11]
P.T. Anastas and M.M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res. 35(2002), 686-694.
DOI: 10.1021/ar010065m
Google Scholar
[12]
S. Minakata and M. Komatsu, Organic reactions on silica in water, Chem. Rev. 109(2008), 711-724.
DOI: 10.1021/cr8003955
Google Scholar
[13]
M.O. Simon and C.J. Li, Green chemistry oriented organic synthesis in water, Chem. Soc. Rev. 41(2012), 1415-1427.
DOI: 10.1039/c1cs15222j
Google Scholar
[14]
J.L. Song, H.L. Fan, J. Ma and B.X. Han, Conversion of glucose and cellulose into value-added products in water and ionic liquids, Green Chem. 15(2013), 2619-2635.
DOI: 10.1039/c3gc41141a
Google Scholar
[15]
P. Maki-Arvela, I.L. Simakova, T. Salmi and D.Y. Murzin, Production of lactic acid/lactates from biomass and their catalytic transformations to commodities, Chem. Rev. 114(2013), 1909-(1971).
DOI: 10.1021/cr400203v
Google Scholar
[16]
M.S. Holm, Y.J. Pagan-Torres, S. Saravanamurugan, A. Riisager, J.A. Dumesic and E. Taarning, Sn-Beta catalysed conversion of hemicellulosic sugars, Green Chem. 14(2012), 702-706.
DOI: 10.1039/c2gc16202d
Google Scholar
[17]
M.S. Holm, S. Saravanamurugan and E. Taarniing, Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts, Science, 328(2010), 602-605.
DOI: 10.1126/science.1183990
Google Scholar
[18]
Y.L. Wang, W.P. Deng, B.J. Wang, Q.H. Zhang, X.Y. Wan, Z.C. Tang, Y. Wang, C. Zhu, Z.X. Cao, G.C. Wang and H.L. Wan, Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water, Nat. Commun. 4(2013), 2141.
DOI: 10.1038/ncomms3141
Google Scholar
[19]
X.Y. Yan, F.M. Jin, K. Tohji, A. Kishita and H. Enomoto, Hydrothermal conversion of carbohydrate biomass to lactic acid, AIChE J. 56(2010), 2727-2733.
DOI: 10.1002/aic.12193
Google Scholar
[20]
L.Z. Kong, G.M. Li, H. Wang, W.Z. He and F. Ling, Hydrothermal catalytic conversion of biomass for lactic acid production, J. Chem. Technol. Biotechnol. 83(2008), 383-388.
DOI: 10.1002/jctb.1797
Google Scholar
[21]
C.B. Rasrendra, I.G.B.N. Makertihartha, S. Adisasmito and H.J. Heeres, Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions, Top. Catal. 53(2010).
DOI: 10.1007/s11244-010-9570-0
Google Scholar
[22]
H. Kishida, F.M. Jin, X.Y. Yan, T. Moriya and H. Enomoto, Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction, Carbohydr. Res. 341(2006), 2619-2623.
DOI: 10.1016/j.carres.2006.06.013
Google Scholar
[23]
R.M. West, M.S. Holm, S. Saravanamurugan, J.M. Xiong, Z. Beversdorf, E. Taarning and C.H. Christensen, Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars, J. Catal. 269(2010), 122-130.
DOI: 10.1016/j.jcat.2009.10.023
Google Scholar
[24]
F. de Clippel, M. Dusselier, R.V. Rompaey, P. Vanelderen, J. Dijkmans, E. Makshina, L. Giebeler, S. Oswald, G.V. Baron, J.F.M. Denayer, P.P. Pescarmona, P.A. Jacobs and B.F. Sels, Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts, J. Am. Chem. Soc. 134(2012).
DOI: 10.1021/ja301678w
Google Scholar
[25]
F. Chambon, F. Rataboul, C. Pinel, A. Cabiac, E. Guillon and N. Essayem, Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid, Appl. Catal. B Environ. 105(2011).
DOI: 10.1016/j.apcatb.2011.04.009
Google Scholar
[26]
A. Charmot and A. Katz, Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: cellobiose and maltose, J. Catal. 276(2010), 1-5.
DOI: 10.1016/j.jcat.2010.08.006
Google Scholar
[27]
M. Marzo, A. Gervasini and P. Carniti, Hydrolysis of disaccharides over solid acid catalysts under green conditions, Carbohydr. Res. 347(2012), 23-31.
DOI: 10.1016/j.carres.2011.10.018
Google Scholar
[28]
N.T.M. Hai, J. Odermatt, V. Grimaudo, K.W. Kramer, A. Fluegel, M. Arnold, D. Mayer and P. Broekmann, Potential oscillations in galvanostatic Cu electrodeposition: antagonistic and synergistic effects among SPS, chloride, and suppressor additives, J. Phys. Chem. C 116(2012).
DOI: 10.1021/jp2096086
Google Scholar
[29]
J. Howarth, K. Hanlon, D. Fayne and P. McCormac, Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels-Alder reaction, Tetrahedron Lett. 38(1997), 3097-3100.
DOI: 10.1016/s0040-4039(97)00554-6
Google Scholar
[30]
W.E. Eckles and T.W. Starinshak, U.S. Patent 4, 038, 161. (1977).
Google Scholar
[31]
W.A. Rogers and J.E. Woehst, U.S. Patent 3, 320, 317. (1967).
Google Scholar
[32]
X. Wu and D.Y.C. Leung, Optimization of biodiesel production from camelina oil using orthogonal experiment, Appl. Energy 88(2011), 3615-3624.
DOI: 10.1016/j.apenergy.2011.04.041
Google Scholar