[1]
M Klavarioti, D Mantzavinos, D Kassinos. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes [J] Environment International 2009, 35 (2): 402–417.
DOI: 10.1016/j.envint.2008.07.009
Google Scholar
[2]
N Azbar, T Yonar, K Kestioglu. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent [J]. Chemosphere 2004, 55(1): 35-43.
DOI: 10.1016/j.chemosphere.2003.10.046
Google Scholar
[3]
X Zhang, Y Wang, G Li. Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst [J]. Journal of Molecular Catalysis A: Chemical 2005, 237(1-2): 199–205.
DOI: 10.1016/j.molcata.2005.03.043
Google Scholar
[4]
S Horikoshi, H Hidaka, N Serpone. Environmental Remediation by an Integrated Microwave/UV-Illumination method: 1. Microwave-Assisted degradation of rhodamine-B dye in aqueous TiO2 dispersion [J]. Environmental Science &Technology 2012, 36(6): 1357-1366.
DOI: 10.1021/es010941r
Google Scholar
[5]
H Gyuakim, J SukaJang, E DuckaJeong Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis [J]. Chemical Communications 2009, 39: 5889-5891.
DOI: 10.1039/b911805e
Google Scholar
[6]
M.J. Molaei, A. Ataie, S. Raygan, et al. The effect of heat treatment and re-calcination on magnetic properties of BaFe12O19/Fe3O4 nano-composite [J]. Ceramics International 2012, 38: 3155–3159.
DOI: 10.1016/j.ceramint.2011.12.018
Google Scholar
[7]
Qinhan Jin, Feng Liang, Hanqi Zhang, et al. Application of microwave techniques in analytical chemistry [J]. TrAC Trends in Analytical Chemistry 1999, 18(7): 479-484.
DOI: 10.1016/s0165-9936(99)00110-7
Google Scholar
[8]
Charalampos Prestos, Michael Komaitis. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds [J]. LWT-food science and technology 2008, 41(4): 652-659.
DOI: 10.1016/j.lwt.2007.04.013
Google Scholar
[9]
He Yiming, Cai Jun, Li Tingting et al. Synthesis, characterization and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation [J]. Industrial & Engineering Chemistry research 2012, 51(45): 14729-14737.
DOI: 10.1021/ie301774e
Google Scholar
[10]
T.K. Pathak, N.H. Vasoya, Thillai Sivakumar et al. Photocatalytic degradation of aqueous nitrobenzene solution using nanacrystalline Mg-Mn ferrites[J]. Materials Science 2013, 764: 116-129.
DOI: 10.4028/www.scientific.net/msf.764.116
Google Scholar
[11]
Lei Zhang, Xinyu Zhou, Xingjia Guo et al. Investigation on the degradation of acid fuchsin induced oxidation by MgFe2O4 under microwave irradiation [J]. Journal of Molecular Catalysis A: Chemical 2011, 335: 31-37.
DOI: 10.1016/j.molcata.2010.11.007
Google Scholar
[12]
Dalel Daassi, Fakher Frikha, Hela Zouari-Mechichi, et al. Application of response surface methodology to optimize decolourization of dyes by the laccase-mediator system [J]. Journal of Environmental Management 2012, 108: 84-91.
DOI: 10.1016/j.jenvman.2012.04.039
Google Scholar
[13]
Qi Chen, Adam J Rondinone, Z John Zhang, et al. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation [J]. Journay of Magnetism and Magnetic Materials 1999(4), 194: 1-7.
DOI: 10.1016/s0304-8853(98)00585-x
Google Scholar
[14]
Ling Zhao, Xinyong Li, Qidong Zhao, et al. Synthesis, characterization and adsorptive performance of MgFe2O4 nanosphere for S02 removal [J]. Journal of Hazardous Materials 2010, 184: 704-709.
DOI: 10.1016/j.jhazmat.2010.08.096
Google Scholar
[15]
Bahadir K. KÖrbahti, M.A. Rauf. Application of response surface analysis to the photolytic degradation of Basic Red 2 dye [J]. Chemical Engineering Journal 2008, 138: 166-171.
DOI: 10.1016/j.cej.2007.06.016
Google Scholar
[16]
Ali R. Khataee, Mahmoud Zarei, Leila Moradkhannejhad. Application of response surface methodology for optimization of azo dye removal by oxalates catalyzed photoelectron- Fenton process using carbon nanotube-PTEE cathode [J]. Desalination 2010, 258: 112-119.
DOI: 10.1016/j.desal.2010.03.028
Google Scholar
[17]
Kannan Balan, Thayumanavan Palvannan, Palanivel Sathishkumar. Decolorization of malachite green by laccase: Optimization by response surface methodology [J]. Jounal of the Taiwan Institute of Chemical Engineers 2012, 43: 776-782.
DOI: 10.1016/j.jtice.2012.04.005
Google Scholar
[18]
Kunwar P. Singh, Shikha Gupta, Arun K. Singh, et al. Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite [J]. Chemical Engineering Journal 2010, 165: 151-160.
DOI: 10.1016/j.cej.2010.09.010
Google Scholar
[19]
Hiromichi Aono, Hideyuki Hirazawa, Takashi Naohara, et al. Surface study of fine MgFe2O4 ferrite powder prepared by chemical methods [J]. Applied Surface Science 2008, 254: 2319-2324.
DOI: 10.1016/j.apsusc.2007.09.024
Google Scholar
[20]
Praveen Sharma, Lakhvinder Singh, Neer Dibaghi. Optimization of process variables for decolorization of disperse yellow 211 by bacillus subtilis using Box-Behnken design[J]. Journal of Hazardous Materials 2009, 164: 1024-1029.
DOI: 10.1016/j.jhazmat.2008.08.104
Google Scholar
[21]
Sun Zhenshi, Chen Yingxu, Ke Qiang et al. Photocatalytic degradation of azo dye by TiO2/bentonite nanocomposite [J]. Acta Scientiae Circumstantiae 2003, 23(1): 129-133.
Google Scholar