Degradation of Dyes by H2O2 with Activated Charcoal Supported MgFe2O4 under Microwave Irradiation

Article Preview

Abstract:

In this study, MgFe2O4 is produced by the chemical coprecipitation method and supported by activated charcoal (C/MgFe2O4). It is observed by the FT-IR spectra and the true density. The dyeing wastewater modeled by dye Reactive Brilliant Red X-3B solution is dealt with H2O2 on the radiation of microwave and used the C/MgFe2O4 as adsorbent and catalyst. Tests are designed by the response surface methodology (RSM) to annalyze and optimize the process. The optimum condition is: 3 gram of C/MgFe2O4, the pH of 5, 1.1mL H202, the microwave power of 150W. The results say that C/MgFe2O4 is very good on catalyzing the degradation of dyeing wastewater when using the H2O2 under microwave irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

972-977

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M Klavarioti, D Mantzavinos, D Kassinos. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes [J] Environment International 2009, 35 (2): 402–417.

DOI: 10.1016/j.envint.2008.07.009

Google Scholar

[2] N Azbar, T Yonar, K Kestioglu. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent [J]. Chemosphere 2004, 55(1): 35-43.

DOI: 10.1016/j.chemosphere.2003.10.046

Google Scholar

[3] X Zhang, Y Wang, G Li. Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst [J]. Journal of Molecular Catalysis A: Chemical 2005, 237(1-2): 199–205.

DOI: 10.1016/j.molcata.2005.03.043

Google Scholar

[4] S Horikoshi, H Hidaka, N Serpone. Environmental Remediation by an Integrated Microwave/UV-Illumination method: 1. Microwave-Assisted degradation of rhodamine-B dye in aqueous TiO2 dispersion [J]. Environmental Science &Technology 2012, 36(6): 1357-1366.

DOI: 10.1021/es010941r

Google Scholar

[5] H Gyuakim, J SukaJang, E DuckaJeong Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis [J]. Chemical Communications 2009, 39: 5889-5891.

DOI: 10.1039/b911805e

Google Scholar

[6] M.J. Molaei, A. Ataie, S. Raygan, et al. The effect of heat treatment and re-calcination on magnetic properties of BaFe12O19/Fe3O4 nano-composite [J]. Ceramics International 2012, 38: 3155–3159.

DOI: 10.1016/j.ceramint.2011.12.018

Google Scholar

[7] Qinhan Jin, Feng Liang, Hanqi Zhang, et al. Application of microwave techniques in analytical chemistry [J]. TrAC Trends in Analytical Chemistry 1999, 18(7): 479-484.

DOI: 10.1016/s0165-9936(99)00110-7

Google Scholar

[8] Charalampos Prestos, Michael Komaitis. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds [J]. LWT-food science and technology 2008, 41(4): 652-659.

DOI: 10.1016/j.lwt.2007.04.013

Google Scholar

[9] He Yiming, Cai Jun, Li Tingting et al. Synthesis, characterization and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation [J]. Industrial & Engineering Chemistry research 2012, 51(45): 14729-14737.

DOI: 10.1021/ie301774e

Google Scholar

[10] T.K. Pathak, N.H. Vasoya, Thillai Sivakumar et al. Photocatalytic degradation of aqueous nitrobenzene solution using nanacrystalline Mg-Mn ferrites[J]. Materials Science 2013, 764: 116-129.

DOI: 10.4028/www.scientific.net/msf.764.116

Google Scholar

[11] Lei Zhang, Xinyu Zhou, Xingjia Guo et al. Investigation on the degradation of acid fuchsin induced oxidation by MgFe2O4 under microwave irradiation [J]. Journal of Molecular Catalysis A: Chemical 2011, 335: 31-37.

DOI: 10.1016/j.molcata.2010.11.007

Google Scholar

[12] Dalel Daassi, Fakher Frikha, Hela Zouari-Mechichi, et al. Application of response surface methodology to optimize decolourization of dyes by the laccase-mediator system [J]. Journal of Environmental Management 2012, 108: 84-91.

DOI: 10.1016/j.jenvman.2012.04.039

Google Scholar

[13] Qi Chen, Adam J Rondinone, Z John Zhang, et al. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation [J]. Journay of Magnetism and Magnetic Materials 1999(4), 194: 1-7.

DOI: 10.1016/s0304-8853(98)00585-x

Google Scholar

[14] Ling Zhao, Xinyong Li, Qidong Zhao, et al. Synthesis, characterization and adsorptive performance of MgFe2O4 nanosphere for S02 removal [J]. Journal of Hazardous Materials 2010, 184: 704-709.

DOI: 10.1016/j.jhazmat.2010.08.096

Google Scholar

[15] Bahadir K. KÖrbahti, M.A. Rauf. Application of response surface analysis to the photolytic degradation of Basic Red 2 dye [J]. Chemical Engineering Journal 2008, 138: 166-171.

DOI: 10.1016/j.cej.2007.06.016

Google Scholar

[16] Ali R. Khataee, Mahmoud Zarei, Leila Moradkhannejhad. Application of response surface methodology for optimization of azo dye removal by oxalates catalyzed photoelectron- Fenton process using carbon nanotube-PTEE cathode [J]. Desalination 2010, 258: 112-119.

DOI: 10.1016/j.desal.2010.03.028

Google Scholar

[17] Kannan Balan, Thayumanavan Palvannan, Palanivel Sathishkumar. Decolorization of malachite green by laccase: Optimization by response surface methodology [J]. Jounal of the Taiwan Institute of Chemical Engineers 2012, 43: 776-782.

DOI: 10.1016/j.jtice.2012.04.005

Google Scholar

[18] Kunwar P. Singh, Shikha Gupta, Arun K. Singh, et al. Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite [J]. Chemical Engineering Journal 2010, 165: 151-160.

DOI: 10.1016/j.cej.2010.09.010

Google Scholar

[19] Hiromichi Aono, Hideyuki Hirazawa, Takashi Naohara, et al. Surface study of fine MgFe2O4 ferrite powder prepared by chemical methods [J]. Applied Surface Science 2008, 254: 2319-2324.

DOI: 10.1016/j.apsusc.2007.09.024

Google Scholar

[20] Praveen Sharma, Lakhvinder Singh, Neer Dibaghi. Optimization of process variables for decolorization of disperse yellow 211 by bacillus subtilis using Box-Behnken design[J]. Journal of Hazardous Materials 2009, 164: 1024-1029.

DOI: 10.1016/j.jhazmat.2008.08.104

Google Scholar

[21] Sun Zhenshi, Chen Yingxu, Ke Qiang et al. Photocatalytic degradation of azo dye by TiO2/bentonite nanocomposite [J]. Acta Scientiae Circumstantiae 2003, 23(1): 129-133.

Google Scholar