Electrochemical Degradation of Methyl Orange by Samarium and Antimony Codoped SnO2 Electrodes

Article Preview

Abstract:

In this work, samarium and antimony (Sm–Sb) codoped tin oxide (SnO2) films have been successfully prepared on titanium (Ti) substrate by a facile sol gel method. The samples were characterized by X–ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The composite film materials were used as anode for the electro-degradation of methyl orange solution. Two effective factors of electro–catalytic properties namely, the content of Sm in the SnO2 samples and the calcination temperature, have been optimized based on the electro-degradation experiments. A moderately calcination temperature of 873 K and 1.0% Sm doping owned the best performance. The smaller grain sizes and optical band gap of the SnO2 by introduction of the Sm improved electro-catalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

962-966

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.Y. Bagastyo, J. Radjenovic, Y. Mu, R. A. Rozendal, D. J. Batstone, K. Rabaey, water res. Vol. 45 (2011), p.4951.

DOI: 10.1016/j.watres.2011.06.039

Google Scholar

[2] G. Laugel, B. Louis, W. Hua, Sci. Adv. Mater. Vol. 4 (2012), p.734.

Google Scholar

[3] J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen, M. A. Oturan, Chemosphere, Vol. 87 (2012), p.614.

Google Scholar

[4] M. A. Petersen, T. C. Sale, K. F. Reardon, Chemosphere, Vol. 67, (2007), p.1573.

Google Scholar

[5] B. Adams, M. Tian, A. Chen, Electrochim Acta. Vol. 54 (2009), p.1491.

Google Scholar

[6] H. G. Oliveira, B. C. Fitzmorris, C. Longo, J. Z. Zhang, Sci. Adv. Mater. Vol. 4 (2012), p.673.

Google Scholar

[7] L. L. Dıaz-Flores, R. Ramırez-Bon, A. Mendoza-Galvan, E. Prokhorov, J. Gonzalez-Hernandez, J. Phys. Chem. Solids. Vol. 64 (2003), p.1037.

Google Scholar

[8] M. A. Dal Santos, A. C. Antunes, C. Ribeiro, C. P. F. Borges, S. R. M. Antunes, A. J. Zara, S. A. Pianaro, Mater. Lett. Vol. 57 (2003), p.4378.

DOI: 10.1016/s0167-577x(03)00328-8

Google Scholar

[9] S.K. F. Ahmed, P. K. Ghosh, S. Khan, M. K. Mitra, K. K. Chattopadhyay, Appl. Phys. A, Vol. 86 (2007), p.139.

Google Scholar

[10] B. Thangaraju, Thin Solid Films, Vol. 402 (2002), p.71.

Google Scholar

[11] H. X. Li, R. H. Wang, H. Zhang, J. Zhao, G. R. Liu, Y. S. Chen, S. Z. Duan, Mater. Sci. Eng., B, Vol. 107 (2004), p.119.

Google Scholar

[12] Y.J. Jiao, H.X. Li, C.H. Guo, G.R. Liu, Y.S. Chen, S.Z. Duan, Rare Metals, Vol. 20 (2001), p.38.

Google Scholar

[13] L. S. Chen, H. W. Zhou, H. X. Li, L. Yu, Sci. Adv. Mater. Vol. 2 (2010), p.528.

Google Scholar

[14] L. S. Chen, Y. Y. Liu, H. X. Li, C. Liu, K. Wu, Adv. Mater. Res. Vol. 465 (2012), p.192.

Google Scholar

[15] H. X. Li, R. H. Xia, Z. W. Jiang, S. S. Chen, D. Z. Chen, Chin. J. Chem. Vol. 26 (2008), p.1787.

Google Scholar

[16] B. Jia, W. Jia, Y. Ma, X. Wu, F. Qu, Sci. Adv. Mater. Vol. 4 (2012), p.702.

Google Scholar

[17] X. Q. Zuo, H. X. Li, L. Sh. Chen, H. W. Zhou, R. H. Xia, Chinese J. Struct. Chem. Vol. 26 (2007), p.1017.

Google Scholar

[18] A. P. Rizzato, J. Sol-Gel Sci. Technol, Vol. 32 (2004), p.155.

Google Scholar

[19] C. Terrier, J. P. Chatelon, R. Berjoan, J.A. Roger, Thin Solid Films, Vol. 263 (1995), p.37.

DOI: 10.1016/0040-6090(95)06543-1

Google Scholar

[20] S. Pan, S. Wang, Y. Zhang, S. Xu, F. Kong, Y. Luo, Y. Tian, X. Teng, G. Li, Catal. Commu. Vol. 24 (2012), p.96.

Google Scholar

[21] Y. J. Feng, X.Y. Li, Water Res, Vol. 37 (2003), p.2399.

Google Scholar