Inactivation of E. Coli Using ZnO Nanofluids and Ultrasound

Article Preview

Abstract:

Combination of disinfection method gives advantages. In this work, inactivation of E. coli using ZnO nanofluids and ultrasound is evaluated. Growth curves of bacteria were investigated to reveal the inactivation activities of ZnO nanofluids and ultrasound. The effects of combination of ZnO nanofluids and ultrasound, ultrasound time, ultrasound induction point and the induction order of ZnO nanofluids and ultrasound were studied. The results suggested that combination of ZnO nanofluids and ultrasound gives better inactivation effect on E. coli when comparing with single disinfection method. Ultrasound for 10 s helped ZnO nanofluids inhibiting bacteria better than ultrasound for 30 s /60 s. Ultrasound induction point (at 0 hr, 2 hr or 4hr) did not affect on ZnO nanofluids to exhibit the inhibiting property. Induction ultrasound prior to adding ZnO nanofluids showed the better inactivation effect on E. coli. The results also displayed that in this work, ultrasound was mainly worked as a pre-treatment step, instead of a disinfection method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

978-982

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Hua and J.E. Thompson. Wat. Res. Vol 34(2000), p.3888.

Google Scholar

[2] P. Piyasena, E. Mohareb and R.C. McKellar. Inter J. Food Microbio. Vol 87 (2003), p.207.

Google Scholar

[3] S. Gao, G.D. Lewis, M. Ashokkumar and Y. Hemar. Ultrason Sonochem. Vol 21 (2014), p.454.

Google Scholar

[4] P. Piyasena, E. Mohareb and R.C. McKellar. Inter J. Food Microbio. Vol 87 (2003), p.207.

Google Scholar

[5] S. Gao, G.D. Lewis, M. Ashokkumar and Y. Hemar. Ultrason Sonochem. Vol 21 (2014), p.446.

Google Scholar

[6] K.K. Jyoti and A.B. Pandit. Biochem Eng J. Vol 7 (2001), p.201.

Google Scholar

[7] A. Simon-Deckers, S. Loo, M. Mayne-L'Hermite, N. Herlin-Boime, N. Menguy, C. Reynaud, B. Gouget and M. Carriere. Environ Sci and Technol. Vol 43 (2009), p.8423.

DOI: 10.1021/es9016975

Google Scholar

[8] L.L. Zhang, Y.H. Jiang, Y.L. Ding, M. Povey and D. York. J Nanopart Res. Vol 9 (2007), p.479.

Google Scholar

[9] L.L. Zhang, Y.L. Ding, M. Povey, M. and D. York. Prog Nat Sci. Vol 18 (2008), p.939.

Google Scholar

[10] N. Lydakis-Simantiris, D. Riga, E. Katsivela, D. Mantzavinos and N.P. Xekoukoulotakis. Desalination. Vol 250 (2010), p.351.

DOI: 10.1016/j.desal.2009.09.055

Google Scholar

[11] T. Blume and U. Neis. Ultrason SonochemVol 11(2004), p.333.

Google Scholar

[12] V. Naddeo, M. Landi, V. Belgiorno and R.M.A. Napoli. J. Hazardous mater. Vol 168(2009), p.925.

Google Scholar

[13] G.R. Burleson, T.M. Murray and M. Pollard. Appl. Microbiol. Vol 29 (1975), p.340.

Google Scholar

[14] M.F. Dadjour, C. Ogino, S. Matsumura and N. Shimizu. Biochem Eng. J. Vol 25(2005), p.243.

Google Scholar

[15] M.F. Dadjour, C. Ogino, S. Matsumura, S. Nakamura and N. Shimizu. Water Res Vol 40(2006), p.1137.

Google Scholar

[16] S. Drakopoulou, S. Terzakis, M.S. Fountoulakis, D. Mantzavinos and T. Manios. Ultrason Sonochem. Vol 16 (2009), p.629.

Google Scholar

[17] J.T. Seil and T.J. Webster. Nanotechnology. Vol 23 (2012), p.495101.

Google Scholar

[18] L.L. Zhang, Y.H. Jiang, Y.L. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J. O'Neill, D.W. York. J Nanopart Res. Vol 12 (2010), p.1625.

Google Scholar