Variations in Proline Content of Salt Cedar (Tamarix chinensis) in Different Habitats of the Yellow River Delta, China

Article Preview

Abstract:

Understanding relationships between vegetation and its substrate environment is helpful for protection of ecosystem integrity. Substrate has been proved as one of good indicators to reveal the inherent interactions between wetland vegetation and its environment. A study was thus conducted to investigate the suitable soil environment for salt cedar (Tamarix chinensis) in order to predict its distribution in the Yellow River Delta in which Tamarix chinensis has been spreading in recent years. This study analyzed the soil parameters as environmental variations, and at the same time used proline content as a physiological indicator to illuminate the condition of the Tamarix chinensis. The habitats were classified into 3 clusters at 95% confident level with K-mean clustering algorithm. The differences in soil conductivity, Cl-, NO3-, Na+ and Mg2+ among the three clusters were significant as revealed by ANOVA results. The distribution of these clusters and their soil variations were consistent, implying that the clustering illuminates the differences physically. Finally, a range of Tamarix chinensis leaf proline was settled and compared with the clustering results, and it was found that Tamarix chinensis could have positive growth dynamic under moderate soil water and salinity conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1010-1012)

Pages:

126-135

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kennedy MP, Murphy KJ, Gilvear DJ (2006). Hydrobiologia 570 (1): 189-196.

Google Scholar

[2] Etten EJB, Vellekoop SE (2009). Hydrobiologia 626 (1): 67-77.

Google Scholar

[3] Jeddi K, Chaieb M (2009). Flora-Morphology, Distribution, Functional Ecology of Plants 205 (3): 184-189.

DOI: 10.1016/j.flora.2009.03.002

Google Scholar

[4] Shevyrnogov A, Vysotskaya G, Sukhinin A, Frolikova O, Tchernetsky M (2008). Adv Space Res 41 (1): 36-40.

DOI: 10.1016/j.asr.2007.02.008

Google Scholar

[5] Wang YP, Shao MA, Zhang XC (2008). Acta Ecologica Sinica 28 (8): 3769-3778.

Google Scholar

[6] Farrell JM, Murry BA, Leopold DJ, Halpern A, Rippke MB, Godwin KS, Hafner SD (2009) s. Hydrobiologia: DOI 10. 1007/s10750-10009-10035-z: 10751-10718.

Google Scholar

[7] Cui BS, Tang N, Zhao XS, Bai JH (2009a). Journal for Nature Conservation 17 (3): 129-141.

Google Scholar

[8] Cui BS, Yang QC, Yang ZF, Zhang KJ (2009b). Ecol Eng 35: 1090-1103.

Google Scholar

[9] Zong X, Liu GH, Qiao YL (2009) (in chinese). Journal of Geo-information Science 11 (1): 91-97.

Google Scholar

[10] DeLoach CJ, Lewis PA, Herr JC, Carruthers RI, Tracy JL, Johnson J (2003). Biol Control 27 (2): 117-147.

Google Scholar

[11] Zhao XS, Lü JZ, Sun T (2009). Journal of Beijing Forestry University 31 (3): 29-36.

Google Scholar

[12] Gaskin JF, Kazmer DJ (2009). Biological Invasions 11 (5): 1121-1130.

Google Scholar

[13] Li S, Wang G, Deng W, Hu Y, Hu WW (2009). Ecol Eng 35 (12): 1719-1726.

Google Scholar

[14] Kanai Y, Ueta M, Germogenov N, Nagendran M, Mita N, Higuchi H (2002). Biol Conserv 106 (3): 339-346.

Google Scholar

[15] Bhattacharjee J, Taylor JP, Smith LM, Haukos DA (2009). Biological Invasions 11 (8): 1777-1787.

Google Scholar

[16] Wu D, Liu J, Zhang G, Ding W, Wang W, Wang R (2009). Ecol Model 220 (24): 3490-3498.

Google Scholar

[17] Horton JL, Clark JL (2001). Forest Ecol Manag 140 (2-3): 239-247.

Google Scholar

[18] Zhuang L, Chen Y, Li W, Lü X (2007). Acta Ecologica Sinica 27 (10): 4247-4251.

Google Scholar

[19] Shi YW, Wang YL, Li WB, Gao SM, Li X (2007). Journal of Xinjiang Agricultural University 30 (2): 5-8.

Google Scholar

[20] Ain-Lhout F, Zunzunegui M, Diaz Barradas MC, Tirado R, Clavijo A, Garcia Novo F (2001). Plant Soil 230 (2): 175-183.

DOI: 10.1023/a:1010387610098

Google Scholar

[21] Rekika D, Nachit MM, Araus JL, Monneveux P (1998). Photosynthetica 35 (1): 129-138.

DOI: 10.1023/a:1006890319282

Google Scholar

[22] Xu XM, Ye GC, Li GF (2000) (in chinese). Chinese Bulletin of Botany 17 (6): 536-542.

Google Scholar

[23] Jime'nez-Bremont JF, Becerra-Flora A, Hernández-Lucero E, Rodríguez-Kessler M, Acosta-Gallegos JA, Ramírez-Pimentel JG (2006). Biol Plantarum 50 (4): 763-766.

DOI: 10.1007/s10535-006-0126-x

Google Scholar

[24] Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF (2008). Plant Physiol Bioch 46 (1): 82-92.

DOI: 10.1016/j.plaphy.2007.10.011

Google Scholar

[25] Tripathi SB, Gurumurthi K, Panigrahi AK, Shaw BP (2007). Biol Plantarum 51 (1): 110-115.

Google Scholar

[26] Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008). Environ Exp Bot 63 (1-3): 19-27.

Google Scholar

[27] Banu M, Akhter N, Hoque M, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009). J Plant Physiol 166 (2): 146-156.

DOI: 10.1016/j.jplph.2008.03.002

Google Scholar

[28] Hoque M (2008). J Plant Physiol 165 (8): 813-824.

Google Scholar

[29] Ashraf M, Foolad MR (2007). Environ Exp Bot 59 (2): 206-216.

Google Scholar

[30] Ehsanpour AA, Fatahian N (2003). Plant Cell, Tissue and Organ Culture 73 (1): 53-56.

DOI: 10.1023/a:1022619523726

Google Scholar

[31] Balestrasse KB, Gallego SM, Benavides MP, Tomaro ML (2005). Plant Soil 270 (1): 343-353.

Google Scholar

[32] Claussen W (2002). Plant Soil 247 (2): 199-209.

Google Scholar

[33] Chen M, Chen YN, Li WH (2008). Acta Botanica Boreali-Occidentalia Sinica 28 (7): 1415-1421.

Google Scholar

[34] Wang WH, Zhang XM, Yan HL (2009). Arid Zone Research 26 (4): 561-568.

Google Scholar

[35] Milliman JD, Meade RH (1983). The Journal of Geology 91 (1): 1-21.

Google Scholar

[36] Qin MZ, Richard HJ, Yuan ZJ, Mark WJ, Sun B (2007). J Environ Manage 85 (4): 858-865.

Google Scholar

[37] Huang HJ, Li F, Pang JZ (2005). Science Press, Beijing.

Google Scholar

[38] Saito Y, Wei H, Zhou Y, Nishimura A, Sato Y, Yokota S (2000). J Asian Earth Sci 18 (4): 489-497.

Google Scholar

[39] Bates LS, Waldren RP, Teare ID (1973). Plant Soil 39 (1): 205-207.

Google Scholar

[40] Chang FJ, Tsai MJ, Tsai WP, Herricks EE (2008). J Hydrol 354 (1-4): 75-89.

Google Scholar

[41] Wang X, Hou P, Yin LK (1999). Arid Zone Research 16 (2): 6-11.

Google Scholar

[42] Cui BS, Yang QC, Zhang KJ, Zhao XS, You ZY (2010). Plant Ecol: DOI 10. 1007/s11258-11010-19723-z.

Google Scholar

[43] Yang M, Liu S, Yang Z, Sun T, Beazley R (2009). Aust J Soil Res 47: 486-497.

Google Scholar

[44] Zhang LB, Song YR, Wu X (2008). Journal of Anhui Agriculture Science 36 (13): 5424-5426.

Google Scholar

[45] Elmore AJ, Mustard JF, Manning SJ (2003). Ecol Appl 13 (2): 443-460.

Google Scholar

[46] Stromberg J (1998). J Arid Environ 40 (2): 133-155.

Google Scholar

[47] Acuña V (2010). Hydrobiologia: DOI: 10. 1007/s10750-10009-10084-10753.

Google Scholar

[48] Zhang Q, Xu C, Becker S, Jiang T (2006). J Hydrol 331 (3-4): 511-523.

Google Scholar