[1]
Anjum, SA; Xie, XY; Wang, LC; Saleem, MF; Man, C; Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research Vol. 6(9), p.2026-(2032).
Google Scholar
[2]
Ben-Ari G. The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. Plant Cell Rep. 2012 Aug; 31(8): 1357-69.
DOI: 10.1007/s00299-012-1292-2
Google Scholar
[3]
Cellier F, 1998. Molecular and physiological response to water deficit in drought-tolerant and drought-sensitive lines of Sunflower. Plant Physiol. J., 116: 319-328.
DOI: 10.1104/pp.116.1.319
Google Scholar
[4]
Chaves MM, Maroco JP, Pereira JS. Understanding plant response to drought-from genes to the whole plant. Funct Plant Biol. 2003; 30: 239–264.
DOI: 10.1071/fp02076
Google Scholar
[5]
Davies WJ, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physinl Plant Mo1 Biol. 1991; 42: 55–76.
DOI: 10.1146/annurev.pp.42.060191.000415
Google Scholar
[6]
Davies WJ, Kudoyarova G, Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plants response to drought. J Plant Growth Regul. 2005; 24: 285–295.
DOI: 10.1007/s00344-005-0103-1
Google Scholar
[7]
Jaleel, C.A., P. Manivannan, B. Sankar, A. Kishorekumar, R. Gopi, R. Somasundaram and R. Panneerselvam, 2007. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf. B: Biointerfaces, 60: 201–206.
DOI: 10.1016/j.colsurfb.2007.06.010
Google Scholar
[8]
Jaleel, C.A., P. Manivannan, G.M.A. Lakshmanan, M. Gomathinayagam and R. Panneerselvam, 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf. B: Biointerfaces, 61: 298–303.
DOI: 10.1016/j.colsurfb.2007.09.008
Google Scholar
[9]
Jones, H.G. (1992) Plants and microclimate, Edn. 2. p.428. Cambridge University Press, Cambridge.
Google Scholar
[10]
Jones, H.G. 1999. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology 95, 139-149.
DOI: 10.1016/s0168-1923(99)00030-1
Google Scholar
[11]
Jones RJ, Mansfield TA. Suppression of stomatal opening in leaves treated with abscisic acid. J Exp Bot. 1970; 21: 714–719.
DOI: 10.1093/jxb/21.3.714
Google Scholar
[12]
Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S. Asami T, Hirai N, Koshiba T, KamiyaY, and Nambara E. 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. European Molecular Biology Organization Journal 23: 1647-1656.
DOI: 10.1038/sj.emboj.7600121
Google Scholar
[13]
Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak J M, Lee I J, Hwang J . 2006. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126: 1109-1120.
DOI: 10.1016/j.cell.2006.07.034
Google Scholar
[14]
Lehmamm H, Schutte HR. 1984. Abscisic-acid metabolism in intact wheat seedlings under normal and stress conditions. Journal of Plant Physiology 117: 201-209.
DOI: 10.1016/s0176-1617(84)80002-4
Google Scholar
[15]
Mozaffari, K., Y. Arshi and H. Zeinali-Khanghaa, 1996. Research on the effects of water stress on some morphophysiological traits and yield components of sunflower (Helianthus annuus L. ). Seed Plant, 12: 24–33.
Google Scholar
[16]
Nambara E, Marion-poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Physiology 56: 165-185.
DOI: 10.1146/annurev.arplant.56.032604.144046
Google Scholar
[17]
Nam, N.H., Y.S. Chauhan and C. Johansen, 2001. Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J. Agric. Sci., 136: 179–189.
DOI: 10.1017/s0021859601008607
Google Scholar
[18]
Qin X, Zeevaart JAD. 1999. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proceedings of the National Academy of Science 96: 15354-15361.
DOI: 10.1073/pnas.96.26.15354
Google Scholar
[19]
Saito S, Hiyai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative atabolism of abscisic acid. Plant Physiology 134: 1439-1449.
DOI: 10.1104/pp.103.037614
Google Scholar
[20]
Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, Mccarty DR. 1997. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872-1874.
DOI: 10.1126/science.276.5320.1872
Google Scholar
[21]
Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009).
Google Scholar
[22]
Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007; 58 (2): 221-7. Epub 2006 Oct 30.
DOI: 10.1093/jxb/erl164
Google Scholar
[23]
Smirnoff, N., 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol., 125: 27–58.
DOI: 10.1111/j.1469-8137.1993.tb03863.x
Google Scholar
[24]
Yordanov I, Velikova V, Tsonev, T, 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol., 187-206.
Google Scholar
[25]
Tan BC, Schwartz SH, Zeevaart JA D, Mccarty DR. 1997. Genetic controlof abscisic acid biosynthesis in maize.
Google Scholar
[26]
Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol. 2010 Nov; 51 (11): 1821-39.
DOI: 10.1093/pcp/pcq156
Google Scholar
[27]
Wikinson S, Davies WJ. ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ. 2002; 25: 195–210.
DOI: 10.1046/j.0016-8025.2001.00824.x
Google Scholar
[28]
Wright STC. The relationship between leaf water potential and levels of abscisic acid and ethylene in excised wheat leaves. Planta. 1977; 134: 183–189.
DOI: 10.1007/bf00384969
Google Scholar
[29]
Xu ZJ, Nakajima M, Suzuk Y, Yamaguchi I. 2002. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiology 129: 1285-1295.
DOI: 10.1104/pp.001784
Google Scholar
[30]
Zeevaart JAD. 1999. Abscisic acid metabolism and its regulation. in biochemistry and molecular biology of plant Hormones. Amsterdam, Elsevier, pp.189-207.
DOI: 10.1016/s0167-7306(08)60488-3
Google Scholar
[31]
Zhang SQ, Outlaw WHJR. Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant Cell Environ. 2001; 24: 1045–1054.
DOI: 10.1046/j.1365-3040.2001.00755.x
Google Scholar