Effect of Constant-Strain Aging on Microstructure, Martensitic Transformation and Magnetic Property of Ni53Mn23.5Ga23.5 Ferromagnetic Shape Memory Alloy

Article Preview

Abstract:

The effect of constant-strain aged and unaged on microstructure, martensite transformation, Curie temperature and magnetic field induction strain of Ni53Mn23.5Ga23.5 ferromagnetic shape memory alloy was investigated in detail. The results show that reverse martensitic transformation temperatures of constant-strain aged sample slowly decrease, which martensitic transformation temperatures almost unchanged. In addition, Curie temperature of constant-strain aged sample is almost maintains consistent with solution-treated sample, but slowly increases saturation magnetization of constant-strain aged sample than solution-treated sample. Finally, the sample of constant-strain aged sample showed a larger magnetic field induction strain of 402 ppm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-118

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, V.V. Kokorin. Appl. Phys. Lett. 69 (1996) (1966).

Google Scholar

[2] A. Sozinov, A.A. Likhachev, N. Lanska, K Ullakko. Appl. Phys. Lett. 80 (2002) 1746.

Google Scholar

[3] C B Jiang, T. Liang, H.B. Xu, M. Zhang, G.H. Wu. Appl. Phys. Lett. 81 (2002) 2818.

Google Scholar

[4] OSo¨. Dderberg, Y. Ge, A. Sozinov, S.P. Hannula, V.K. Lindroos. Smart Mater. Struct. 14 (2005) S223.

Google Scholar

[5] R. O'Handley. Journal of Applied Physics 83 (1998) 3263.

Google Scholar

[6] R. James. M. Wuttig. Philosophical MagazineA– Physics of Condensed Matter Structure Defects 77 (1998) 1273.

Google Scholar

[7] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko. Appl. Phys. Lett. 80 (2002) 1746.

Google Scholar

[8] M. Chmielus, X.X. Zhang, C. Witherspoon et. al. 8(12) (2009) 866.

Google Scholar

[9] L. Gao, W. Cai, A.L. Liu, L.C. Zhao. J. Alloy. Compd. 425 (2006) 314-317.

Google Scholar

[10] Z.Q. Zhao, W. Xiong, S.X. Wu , X.L. Wan g. J. Iron Steel Res. 111 (2004) 55.

Google Scholar

[11] L. Marcin, W. Rafa, K. Waldemar, Z.Q. Zhao, L.P. Jiang. Proc. SPIE. 6170 (2006) 61702C.

Google Scholar

[12] S.H. Guo, Y.H. Zhang, Z.Q. Zhao, Y. Qi, B.Y. Quan, X.L. Wang. J. Rare Earth. 22 (2004) 875.

Google Scholar

[13] K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto. Mater. Sci. Eng. A 378 (2004) 370.

Google Scholar

[14] H. Hosoda, K. Wakashima, T. Sugimot, S. Miyazaki. Mater Trans. (43) 2002, 8525.

Google Scholar

[15] V.V. Khovailo, R. Kainuma, T. Abe, K. Oikawa, T. Takagi. Scripta Mater. 51 (2004): 13.

Google Scholar

[16] J.I. Kim, Y. Liu, S. Miyazaki. Acta Mater. 52 (2004), 487.

Google Scholar

[17] Y. Xin, Y. Li, L. Chai, H.B. Xu. Scripta Mater. 54 (2006), 1139.

Google Scholar

[18] C. Seguı', E. Cesari, J. Font, J. Muntasell, V.A. Chernenko. Scripta Mater. 53 (2005), 315.

Google Scholar

[19] K. Otsuka, X.B. Ren. Mater. Sci. Eng. A. 312 (2001), 207.

Google Scholar

[20] X. Jin., D. Bono, C. Henry, J. Feuchtwanger, S.M. Allen, R.C. O'Handley. ilos. Mag. A 83 (2003) 3193.

Google Scholar

[21] S. Morito and K. Otsuka. Structures and morphologies. Mater. Sci. Engng A, 1996, 208, 47.

Google Scholar

[22] K. Kainuma, H. Nakano, and K. Ishida. Met. Mat. Trans. A, 1996, 27A, 4153.

Google Scholar

[23] V.V. Martynov and V.V. Kokorin. J. Phys. III France, 1992, 2, 739.

Google Scholar

[24] V.V. Martynov. J. Phys. IV France 05 (1995) C8-91.

Google Scholar