Effect of Constant-Strain Aging on Microstructure, Martensitic Transformation and Magnetic Property of Ni53Mn23.5Ga23.5 Ferromagnetic Shape Memory Alloy

Abstract:

Article Preview

The effect of constant-strain aged and unaged on microstructure, martensite transformation, Curie temperature and magnetic field induction strain of Ni53Mn23.5Ga23.5 ferromagnetic shape memory alloy was investigated in detail. The results show that reverse martensitic transformation temperatures of constant-strain aged sample slowly decrease, which martensitic transformation temperatures almost unchanged. In addition, Curie temperature of constant-strain aged sample is almost maintains consistent with solution-treated sample, but slowly increases saturation magnetization of constant-strain aged sample than solution-treated sample. Finally, the sample of constant-strain aged sample showed a larger magnetic field induction strain of 402 ppm.

Info:

Periodical:

Edited by:

Z.S. Liu, L.P. Xu, X.D. Liang, Z.H. Wang and H.M. Zhang

Pages:

114-118

Citation:

G.F. Dong, "Effect of Constant-Strain Aging on Microstructure, Martensitic Transformation and Magnetic Property of Ni53Mn23.5Ga23.5 Ferromagnetic Shape Memory Alloy", Advanced Materials Research, Vol. 1015, pp. 114-118, 2014

Online since:

August 2014

Authors:

Export:

Price:

$38.00

* - Corresponding Author

[1] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, V.V. Kokorin. Appl. Phys. Lett. 69 (1996) (1966).

[2] A. Sozinov, A.A. Likhachev, N. Lanska, K Ullakko. Appl. Phys. Lett. 80 (2002) 1746.

[3] C B Jiang, T. Liang, H.B. Xu, M. Zhang, G.H. Wu. Appl. Phys. Lett. 81 (2002) 2818.

[4] OSo¨. Dderberg, Y. Ge, A. Sozinov, S.P. Hannula, V.K. Lindroos. Smart Mater. Struct. 14 (2005) S223.

[5] R. O'Handley. Journal of Applied Physics 83 (1998) 3263.

[6] R. James. M. Wuttig. Philosophical MagazineA– Physics of Condensed Matter Structure Defects 77 (1998) 1273.

[7] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko. Appl. Phys. Lett. 80 (2002) 1746.

[8] M. Chmielus, X.X. Zhang, C. Witherspoon et. al. 8(12) (2009) 866.

[9] L. Gao, W. Cai, A.L. Liu, L.C. Zhao. J. Alloy. Compd. 425 (2006) 314-317.

[10] Z.Q. Zhao, W. Xiong, S.X. Wu , X.L. Wan g. J. Iron Steel Res. 111 (2004) 55.

[11] L. Marcin, W. Rafa, K. Waldemar, Z.Q. Zhao, L.P. Jiang. Proc. SPIE. 6170 (2006) 61702C.

[12] S.H. Guo, Y.H. Zhang, Z.Q. Zhao, Y. Qi, B.Y. Quan, X.L. Wang. J. Rare Earth. 22 (2004) 875.

[13] K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto. Mater. Sci. Eng. A 378 (2004) 370.

[14] H. Hosoda, K. Wakashima, T. Sugimot, S. Miyazaki. Mater Trans. (43) 2002, 8525.

[15] V.V. Khovailo, R. Kainuma, T. Abe, K. Oikawa, T. Takagi. Scripta Mater. 51 (2004): 13.

[16] J.I. Kim, Y. Liu, S. Miyazaki. Acta Mater. 52 (2004), 487.

[17] Y. Xin, Y. Li, L. Chai, H.B. Xu. Scripta Mater. 54 (2006), 1139.

[18] C. Seguı', E. Cesari, J. Font, J. Muntasell, V.A. Chernenko. Scripta Mater. 53 (2005), 315.

[19] K. Otsuka, X.B. Ren. Mater. Sci. Eng. A. 312 (2001), 207.

[20] X. Jin., D. Bono, C. Henry, J. Feuchtwanger, S.M. Allen, R.C. O'Handley. ilos. Mag. A 83 (2003) 3193.

[21] S. Morito and K. Otsuka. Structures and morphologies. Mater. Sci. Engng A, 1996, 208, 47.

[22] K. Kainuma, H. Nakano, and K. Ishida. Met. Mat. Trans. A, 1996, 27A, 4153.

[23] V.V. Martynov and V.V. Kokorin. J. Phys. III France, 1992, 2, 739.

[24] V.V. Martynov. J. Phys. IV France 05 (1995) C8-91.