[1]
X. J. Yang, A. G. Fane, C. Pin, Separation of zirconium and hafnium using hollow fibres: Part I. Supported liquid membranes, Chem. Eng. J. 88 (2002) 37–44.
DOI: 10.1016/s1385-8947(01)00256-x
Google Scholar
[2]
M. Smolik, A. Jakóbik-Kolon, M. Porański, Separation of zirconium and hafnium using Diphonix® chelating ion-exchange resin, Hydrom. 9 (2009) 350–353.
DOI: 10.1016/j.hydromet.2008.05.010
Google Scholar
[3]
M. Benedict, T. H. Pigford, H. W. Levi, Nuclear Chemical Engineering. McGraw-Hill, New York, 1981, pp.333-341.
Google Scholar
[4]
D. J. Branken, G. Lachman, H.M. Krieg, O.S.L. Bruinsma, Influence of KF and HF on the selectivity of Zr and Hf Separation by Fractional Crystallization of K2Zr(Hf)F6, Ind. Amp Eng. Chem. Res. 49 (2010) 797–808.
DOI: 10.1021/ie900747k
Google Scholar
[5]
H. Ishizuka, Process for refining zirconium tetrachloride containing hafnium tetrachloride, US Patent number: 385, 647, 724 (1974).
Google Scholar
[6]
K. Reuter, G. Passing, S. Kirchmeyer, Process for separating zirconium and hafnium, US Patent number: 763, 539, 622 (2009).
Google Scholar
[7]
Z. Xu, L. Wang, Y. Wu, R. Chi, L. Zhang, M. Wu, Solvent extraction of hafnium from thiocyanic acid medium in DIBK-TBP mixed system, Trans. Nonferrous Met. Soc. China. 22 (2012) 1760–1765.
DOI: 10.1016/s1003-6326(11)61384-8
Google Scholar
[8]
R. Banda, H. Y. Lee, M. S. Lee, Separation of Zr from Hf in hydrochloric acid solution using amine-based extractants, Ind. Eng. Chem. Res. 51 (2012) 9652–9660.
DOI: 10.1021/ie3008264
Google Scholar
[9]
N. V. Deorkar, S. M. Khopkar, Liquid-liquid extraction of zirconium from hafnium and other elements with dicyclohexyl-18-crown-6, Anal. Chim. Acta. 245 (1991) 27–33.
DOI: 10.1016/s0003-2670(00)80197-x
Google Scholar
[10]
A. E. P. Brown, T. V. Healy, Separation of zirconium from hafnium in nitric acid solutions by solvent extraction using dibutyl butylphosphonate: Part 1. Chemistry of the separation, Hydrom. 3 (1978) 265–274.
DOI: 10.1016/0304-386x(78)90027-0
Google Scholar
[11]
M. Taghizadeh, R. Ghasemzadeh, S. N. Ashrafizadeh, K. Saberyan, M. G. Maragheh, Determination of optimum process conditions for the extraction and separation of zirconium and hafnium by solvent extraction, Hydrom. 90 (2008) 115–120.
DOI: 10.1016/j.hydromet.2007.10.002
Google Scholar
[12]
M. Taghizadeh, M. Ghanadi, E. Zolfonoun, Separation of zirconium and hafnium by solvent extraction using mixture of TBP and Cyanex 923, J. Nucl. Mater. 412 (2011) 334–337.
DOI: 10.1016/j.jnucmat.2011.03.033
Google Scholar
[13]
L. E. Sarbeck, D. R. Lee, L. J. Jacoby, J. C. Haygarth, C. T. Goodwin, W. A. Crocker, Zirconium-hafnium separation process, US Patent number 517, 687, 805 (1993).
Google Scholar
[14]
X. J. Yang, A. G. Fane, C. Pin, Separation of zirconium and hafnium using hollow fibres: Part I. Supported liquid membranes, Chem. Eng. J. 88 (2002) 37–44.
DOI: 10.1016/s1385-8947(01)00256-x
Google Scholar
[15]
C. H. Byers, W. G. Sisson, T. S. Snyder, R. J. Beleski, T. L. Francis, U. P. Nayak, Zirconium and hafnium separation in chloride solutions using continuous ion exchange chromatography, US Patent number: 576, 289, 009 (1998).
Google Scholar
[16]
J. M. Begovich, W. G. Sisson, Continuous ion exchange separation of zirconium and hafnium using an annular chromatograph, Hydrom. 10 (1983) 11–20.
DOI: 10.1016/0304-386x(83)90073-7
Google Scholar
[17]
F. J. Hurst, Separation of hafnium from zirconium in sulphuric acid solutions using pressurized ion exchange, Hydrom. 10 (1983) 1–10.
DOI: 10.1016/0304-386x(83)90072-5
Google Scholar
[18]
X. J. Yang, C. Pin, A. G. Fane, Separation of hafnium from zirconium by extraction chromatography with liquid anionic exchangers, J. Chromatogr. Sci. 37 (1999) 171–179.
DOI: 10.1093/chromsci/37.5.171
Google Scholar
[19]
K. T. Qiuquan Wang, Separation of zirconium(IV) and hafnium(IV) by extraction chromatography using di(1-methylheptyl) methylphosphonate as a stationary phase, Anal. Sci. 13 (1997) 27–31.
DOI: 10.2116/analsci.13.27
Google Scholar
[20]
L. Delons, S. Lagarde, A. Favre-reguillon, S. Pellet-Rostaing, M. Lemaire, L. Poriel, Process for the separation and purification of hafnium and zirconium, US Patent number: 770, 896, 204 (2010).
Google Scholar
[21]
D. F. McLaughlin, R. A. Stoltz, Molten salt extractive distillation process for zirconium-hafnium separation, US Patent number: 487447517 (1989).
Google Scholar
[22]
O. S. Monnahela, W. G. Augustyn, J. T. Nel, C. J. Pretorius, J. B. Wagener, The Vacuum Sublimation Separation of Zirconium and Hafnium Tetrafluoride, PMDN Conference, Cape Town, (2013).
Google Scholar
[23]
A. I. Solov'ev, V. M. Malyutina, Production of metallic zirconium tetrafluoride purified from hafnium to reactor purity, Russ. J. Non-Ferr. Met. 43 (2002) 14–18.
Google Scholar
[24]
A. I. Solov'ev, V. M. Malyutina, Metallurgy of less-common and precious metals. Production of metallurgical semiproduct from zircon concentrate for use in production of plastic metallic zirconium, Russ. J. Non-Ferr. Met. 43 (2002) 9–13.
Google Scholar
[25]
J. Withers, A. J. Woytek, J. T. Lileck, Process for the production of high purity zirconium tetrafluoride and other fluorides, " US Patent number: 4983373 (1991).
Google Scholar
[26]
M. L. Kotsar', V. B. Bateev, P. B. Baskov, V. V. Sakharov, V. D. Fedorov, V. V. Shatalov, Preparation of high-purity ZrF4 and HfF4 for optical fibres and radiation-resistant glasses, Inorg. Mater. 37 (2001) 1085–1091.
DOI: 10.1023/a:1012399615098
Google Scholar
[27]
G. Dai, J. Huang, J. Cheng, C. Zhang, G. Dong, K. Wang, A new preparation route for high purity ZrF4, J. Non-Cryst. Solids, 140 (1992) 229–232.
DOI: 10.1016/s0022-3093(05)80772-0
Google Scholar
[28]
K. Fujiura, Y. Ohishi, S. Sakaguchi, Synthesis of high-purity ZrF4 by chemical vapor-deposition, Yogyo-Kyokai-Shi. 95 (1987) 86–88.
Google Scholar
[29]
D. R. MacFarlane, P. J. Newman, A. Voelkel, Methods of purification of zirconium tetrafluoride for fluorozirconate glass, J. Am. Chem. Soc. 85 (2002) 1610–1612.
DOI: 10.1111/j.1151-2916.2002.tb00320.x
Google Scholar
[30]
R. C. Pastor, M. Robinson, Method for preparing ultra-pure zirconium and hafnium tetrafluorides, US Patent number: US 457, 8252 A25 (1986).
Google Scholar
[31]
R. C. Folweiler, Chemical vapor purification of fluorides, US Patent number: US 465, 2438 A24 (1987).
Google Scholar
[32]
L. J. Abate, H. A. Wilhelm, Sublimation of zirconium tetrafluoride, United States Atomic Energy Commission, Ames Laboratory, ISC-151 (1951).
Google Scholar
[33]
J.T. Nel, W.L. Retief, J.L. Havenga, W. du Plessis, J.P. le Roux, Treatment of chemical feedstocks. WO2013054282 A1 (2013).
Google Scholar
[34]
A. Khawam, D. R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals, J. Phys. Chem. B. (2006) 17315–17328.
DOI: 10.1021/jp062746a
Google Scholar
[35]
J. H. Shin, M. S. Choi, D. J. Min, J. H. Park, Isothermal and non-isothermal sublimation kinetics of zirconium tetrachloride (ZrCl4) for producing nuclear grade Zr, Mater. Chem. Phys. 143 (2014) 1075–1081.
DOI: 10.1016/j.matchemphys.2013.11.007
Google Scholar
[36]
S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta,. 520 (2011) 1–19.
DOI: 10.1016/j.tca.2011.03.034
Google Scholar
[37]
J.T. Nel, W. du Plessis, P.L. Crouse, W.L. Retief, Treatment of zirconia-based material with ammonium bi-fluoride. WO2011013085 A1 (2011).
Google Scholar
[38]
J. S. Chickos, W. E. Acree, Jr., Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910-2001, J. Phys. Chem. Ref. Data. 31 (2002).
DOI: 10.1063/1.1475333
Google Scholar
[39]
P. L. Brown, E. Curti, and B. Grambow, Chemical Thermodynamics of Zirconium, OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux (France).
Google Scholar