Martensitic Transformation Behaviour of Ti50Pt50-xCox Shape Memory Alloys

Article Preview

Abstract:

The supercell approach method was used to investigate the effect of partial substitution of Pt with Co on the TiPt potential shape memory alloy. The first-principles calculations were carried out within the generalized gradient approximation to determine the stability of the Ti50Pt50-xCox for x=6.25, 18.75 and 25. We found that the calculated heats of formation and density of states predicted the 6.25 at. % Co to be the most stable structures compared. The elastic properties, thermal coefficient of linear expansion and the density of states results suggest that the partial substitution of Pt with Co decreases the Ms of TiPt with the softening of the Cʹ shear moduli.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-390

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Design 56 (2014) 1078-1113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[2] K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge, Cambirdge University Press, 1998, pp.220-239.

Google Scholar

[3] T. Duerig, K. Melton, D. Stockel, C. Wayman (Eds. ), Engineering aspects of shape memory alloys, London, Butterworth-Heinemann, 1990, pp.89-95.

Google Scholar

[4] M.H. Wu and L. M. Schetky, Industrial applications for shape memory alloys, in SMST, California, (2000).

Google Scholar

[5] K. Otsuka and T. Kakeshita, Science and technology of shape-memory alloys: New Developments, MRS Bull 27 (2002) 91-100.

DOI: 10.1557/mrs2002.43

Google Scholar

[6] J. Van Humbeeck, Non-medical applications of shape memory alloys, Mater. Sci. Eng. A 273-275 (1999) 134-148.

DOI: 10.1016/s0921-5093(99)00293-2

Google Scholar

[7] T. Duerig, A. Pelton, D. Stockel, An overview of nitinol medical applications, Mater. Sci. Eng. A 273-275 (1999) 149-160.

DOI: 10.1016/s0921-5093(99)00294-4

Google Scholar

[8] H. Hosoda, M. Tsuji, M. Mimura, Y. Takahashi, K. Wakashima and Y. Yamabe-Mitarai, Phase transformation of Ti–Ni containing platinum-group metals, MRS 753 (2003) BB5-51-1-BB5-51-6.

DOI: 10.1557/proc-753-bb5.51

Google Scholar

[9] Y. Takahashi, T. Inamura, J. Sakurai, H. Hosoda, K. Wakashima and S. Miyazaki, Transformation behavior of Ti-Ni-Pt high temperature shape memory alloys, Trans. MRS-J. 29 (2004) 3005-3008.

DOI: 10.2320/matertrans.47.540

Google Scholar

[10] T. Inamura, Y. Takahashi, H. Hosoda, K. Wakashima, T. Nagase, T. Nakano, Y. Umakoshi and S. Miyazaki, Transformation behavior of TiNiPt thin films fabricated using melt spinning technique, MRS 842 (2004) 347-352.

DOI: 10.1557/proc-842-s3.2

Google Scholar

[11] K. Otsuka, K. Oda, Y. Ueno, M. Piao, T. Ueki and H. Horikawa, The shape memory effect in a Ti50Pd50 alloy, Scr. Metal. 29 (1993) 1355-1359.

DOI: 10.1016/0956-716x(93)90138-i

Google Scholar

[12] D. Golberg, Y. Xu, Y. Murakami, S. Morito, K. Otsuka, T. Ueki and H. Horikawa, Improvement of Ti50Pd30Ni20 high temperature shape memory alloy by thermomechanical treatments, Scr. Metal. 30 (1994) 1349-1354.

DOI: 10.1016/0956-716x(94)90271-2

Google Scholar

[13] Y. Xu, K. Otsuka, E. Furubayashi, T. Ueki and K. Mitose, Recovery and recrystallization in the Ti_<50>Pd_<50> martensite, Mater. Lett. 30 (1997) 189-197.

DOI: 10.1016/s0167-577x(96)00203-0

Google Scholar

[14] Y. Xu, S. Shimizu, Y. Suzuki, K. Otsuka, T. Ueki and K. Mitose, Recovery and recrystallization process in Ti-Pd-Ni high-temperature shape memory alloys, Acta Mater. 45 (1997) 1503-1511.

DOI: 10.1016/s1359-6454(96)00267-4

Google Scholar

[15] Y. Suzuki, Y. Xu, S. Morito, K. Otsuka and K. Mitose, Effects of boron addition on microstructure and mechanical properties of Ti–Td–Ni high-temperature shape memory alloys, Mater. Lett. 36 (1998) 85-94.

DOI: 10.1016/s0167-577x(98)00009-3

Google Scholar

[16] S. Shimizu, Y. Xu, E. Okunishi, S. Tanaka, K. Otsuka and K. Mitose, Improvement of shape memory characteristics by precipitation-hardening of Ti-Pd-Ni alloys, Maters. Lett. 34 (1998) 23-29.

DOI: 10.1016/s0167-577x(97)00134-1

Google Scholar

[17] H.C. Donkersloot and J.H.N. Van Vucht, Martensitic transformations in gold–titanium palladium–titanium, and platinum–titanium alloys near the equiatomic composition, J. Less-Common Met. 20 (1970) 83-91.

DOI: 10.1016/0022-5088(70)90092-5

Google Scholar

[18] Y. Yamabe-Mitarai, T. Hara, S. Miura, H. Hosoda, Mechanical properties of Ti–50(Pt, Ir) high-temperature shape memory alloys, Maters. Trans. 47 (2006) 650-657.

DOI: 10.2320/matertrans.47.650

Google Scholar

[19] Y. Yamabe-Mitarai, T . Hara, S. Miura, H. Hosoda, Shape memory effect and pseudoelasticity of TiPt, Intermetallics 18 (2010) 2275-2280.

DOI: 10.1016/j.intermet.2010.07.011

Google Scholar

[20] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. B 136 (1964) B864-B871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[21] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133-A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[22] G. Kresse and J. Hafner, Ab-initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558-561.

DOI: 10.1103/physrevb.47.558

Google Scholar

[23] P.E. Blöchl, Projector augmented-plane wave method, Phys. Rev. B 50 (1994) 17953-17978.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[24] J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[25] H.J. Monkhorst and J.D. Pack, On Special Points for Brillouin Zone Integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[26] X. Ren, N. Miura, L. Taniwaki, K. Otsuka, T. Suzuki, K. Tanaka, Y.I. Chumlyakov and M. Asai, Understanding the Martensitic Transformations in TiNi-Based Alloys by Elastic Constants Measurement, Mater. Sci. Eng. A 273-275 (1999) 190-194.

DOI: 10.1016/s0921-5093(99)00368-8

Google Scholar

[27] R. Mahlangu, M.J. Phasha, H.R. Chauke, P.E. Ngoepe, Structural, elastic and electronic properties of equiatomic PtTi as potential high-temperature shape memory alloy, Intermetallics 33 (2013) 27-32.

DOI: 10.1016/j.intermet.2012.09.021

Google Scholar

[28] X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Y.I. Chumlyakov and M. Asai, A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation, Mater. Sci. Eng. A 312 (2001) 196-206.

DOI: 10.1016/s0921-5093(00)01876-1

Google Scholar

[29] A. Wadood and Y. Yamabe-Mitarai, TiPt-Co and TiPt-Ru high temperature shape memory alloys, Mat. Sci. Eng. A 601 (2014) 106-110.

DOI: 10.1016/j.msea.2014.02.029

Google Scholar