Pt/Au Alloys as Reduction Promoters for Co/TiO2 Fischer-Tropsch Catalysts

Article Preview

Abstract:

Noble metals, such as platinum or gold, may promote the reduction of cobalt in supported cobalt catalysts either by direct contact or indirectly via hydrogen spill-over. The synthesis go gold nano-particles using THPC in the presence of a calcined Co/TiO2-catalyst precursor results in a broadening of the gold particle size distribution possibly due to the association of gold with Co3O4. This was not observed for platinum and platinum-gold alloys synthesized in the same manner. Platinum-gold alloys are less effective than platinum as a reduction promoter, possibly due to the presence of gold on the surface of the alloy particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

365-371

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Sewell, C. O'Connor, E. van Steen, Reductive amination of ethanol with silica-supported cobalt and nickel catalysts, Applied Catalysis A: General 125 (1995), 97-112.

DOI: 10.1016/0926-860x(95)00010-0

Google Scholar

[2] K.J.A. Raj, M. Prakash, T. Elangovan, B. Viswanathan, Selective hydrogenation of cinnamaldehyde over cobalt supported on alumina, silica and titania, Catalysis Letters 142 (2012), 87.

DOI: 10.1007/s10562-011-0693-0

Google Scholar

[3] E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Applied Catalysis A: General 161 (1997), 59-78.

DOI: 10.1016/s0926-860x(97)00186-5

Google Scholar

[4] E. van Steen, M. Claeys, Fischer-Tropsch catalysts for the Biomass-to-Liquid (BTL)-process, Chemical Engineering & Technology 31 (2008), 655-666.

DOI: 10.1002/ceat.200800067

Google Scholar

[5] M. de Beer, A. Kunene, D. Nabaho, M. Claeys, E. van Steen, Technical and economic aspects of promotion of cobalt-based Fischer-Tropsch catalysts by noble metals – a review, Journal of the South African Institute of Mining and Metallurgy 114 (2014).

Google Scholar

[6] G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, J. van Dillen, K.P. de Jong, Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts, Journal of the American Chemical Society 128 (2006).

DOI: 10.1021/ja058282w

Google Scholar

[7] M. Rotan, E. Rytter, M. -A. Einarsrud, T. Grande Solid state mechanism leading to enhanced attrition resistance of alumina based catalyst supports for Fischer–Tropsch synthesis, Journal of the European Ceramic Society 33 (2013), 1–6.

DOI: 10.1016/j.jeurceramsoc.2012.08.010

Google Scholar

[8] E. van Steen, G.S. Sewell, R.A. Makhote, C. Micklethwaite, H. Manstein, M. de Lange, C.T. O'Connor, TPR study on the preparation of impregnated Co/SiO2 catalysts, Journal of Catalysis 162 (1996), 220-230.

DOI: 10.1006/jcat.1996.0279

Google Scholar

[9] G.S. Sewell, E. van Steen, C.T. O'Connor, Use of TPR/TPO for characterization of supported cobalt catalysts, Catalysis Letters 37 (1996), 255-260.

DOI: 10.1007/bf00807763

Google Scholar

[10] A. Martínez, G. Prieto, Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles, Journal of Catalysis 245 (2007), 470–476.

DOI: 10.1016/j.jcat.2006.11.002

Google Scholar

[11] S. Vada, A. Hoff, E. Ådnanes, D. Schanke, A. Holmen, Fischer-Tropsch synthesis on supported cobalt catalysts promoted by platinum and rhenium, Topics in Catalysis 2 (1995), 155-162.

DOI: 10.1007/bf01491963

Google Scholar

[12] A. Kogelbauer, J.G. Goodwin Jr., R. Oukaci, Ruthenium Promotion of Co/Al2O3 Fischer–Tropsch Catalysts, Journal of Catalysis 160 (1996), 125–133.

DOI: 10.1006/jcat.1996.0130

Google Scholar

[13] G. Jacobs, T.K. Das, Y. Zhang,J. Li, G. Racoillet, B.H. Davis, Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Applied Catalysis A: General 233 (2002), 263–281.

DOI: 10.1016/s0926-860x(02)00195-3

Google Scholar

[14] H. Zhang, W. Chu, C. Zou, Z. Huang, Z. Ye, L. Zhu, Promotion effects of platinum and ruthenium on carbon nanotube supported cobalt catalysts for Fischer–Tropsch synthesis, Catalysis Letters 141 (2011), 438–444.

DOI: 10.1007/s10562-010-0536-4

Google Scholar

[15] W. Ma, G. Jacobs, R.A. Keogh, D.B. Bukur, B.H. Davis, Fischer–Tropsch synthesis: Effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2O3 catalyst, Applied Catalysis A: General 437– 438 (2012), 1–9.

DOI: 10.1016/j.apcata.2012.05.037

Google Scholar

[16] K.M. Cook, S. Poudyal, J. Miller, C.H. Bartholomew, W.C. Hecker, Reducibility of alumina- supported cobalt Fischer-Tropsch catalysts: Effects of noble metal type, distribution, retention, chemical state, bonding, and influence on cobalt crystallite size, Applied Catalysis A: General 449 (2012).

DOI: 10.1016/j.apcata.2012.09.032

Google Scholar

[17] G. Jacobs, J.A. Chaney, P.M. Patterson, T.K. Das, B.H. Davis, Fischer–Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS, Applied Catalysis A: General 264 (2004).

DOI: 10.1016/j.apcata.2003.12.049

Google Scholar

[18] A.M. Hilmen, D. Schanke, A. Holmen, TPR study of the mechanism of rhenium promotion of alumina supported cobalt Fischer-Tropsch catalysts, Catalysis Letters 38 (1996), 143-147.

DOI: 10.1007/bf00806560

Google Scholar

[19] K. Jalama, N.J. Coville, D. Hildebrandt, D. Glasser, L.L. Jewell, J.A. Anderson, S. Taylor, D. Enache, G.J. Hutchings" Effect of the addition of Au on Co/TiO2 catalyst for the Fischer–Tropsch reaction", Topics in Catalysis 44 (2007), 129-136.

DOI: 10.1007/s11244-007-0286-8

Google Scholar

[20] D.G. Duff, A. Baiker, P.P. Edwards, A new hydrosol of gold clusters. 1. Formation and particle size variation, Langmuir 9 (1993), 2301-2309.

DOI: 10.1021/la00033a010

Google Scholar

[21] J.L. Hueso, V. Sebastián, I. Mayoral, L. Usón, M. Arruebo, J. Santamaria, Beyond gold: rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles, RSC Advances 3 (2013).

DOI: 10.1039/c3ra40774h

Google Scholar

[22] J. Li, G. Jacobs. T. Das. B.H. Davis, Fischer-Tropsch synthesis: effect of water on the catalytic properties of a ruthenium promoted Co/TiO2 catalyst, Applied Catalysis A: General 233 (2002), 255-262.

DOI: 10.1016/s0926-860x(02)00194-1

Google Scholar

[23] H. -Y. Park, T. -Y. Jeon, J.H. Jang, S.J. Yoo, K. -H. Choi, N. Jung, Y. -H. Chung, M. Ahn, Y. -H. Cho, K. -S. Lee, Y. -E. Sung, Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment, Applied Catalysis B: Environmental129 (2013).

DOI: 10.1016/j.apcatb.2012.09.041

Google Scholar

[24] S. Kandoi, A.A. Gokhale, L.C. Grabow, J.A. Dumesic, M. Mavrikakis, Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature, Catalysis Letters 93 (2004), 93-100.

DOI: 10.1023/b:catl.0000016955.66476.44

Google Scholar