Temperature Dependence and Martensitic Transformation of Ti50Pt50 Shape Memory Alloys

Article Preview

Abstract:

Shape memory alloys (SMAs) are a fascinating group of metals that have two remarkable properties, the shape memory effect and superelasticity. The TiPt structure with the B2 phase has been reported to undergo a reversible displacive transformation to B19 martensite at about 1200K. However, this system could serve in principle as the basis of high-temperature shape memory alloys. Molecular dynamics study of martensitic transformation in platinum titanium alloys was performed to investigate the effect of temperature dependence on B2 and B19 structures at 50 at.%Pt. The NPT ensemble was used to determine the properties of these systems and we found good comparisons with recent experimental work. The temperature dependence of TiPt shows potential martensitic change when B19 is heated to extreme high temperatures of 273K up to 1573K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

379-384

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nxumalo, H. K. Chilkwanda and C. Machio, Phase transformation during sintering of mechanically alloyed TiPt, Adv. Metal. Int., (2010) 306-314.

Google Scholar

[2] T. Anson, Shape memory alloys-medical applications, Materials World, 7 (12) (1999) 745-747.

Google Scholar

[3] S. Daly , A. Miller, G. Ravichandran and K. Bhattacharya, An experimental investigation of crack initiation in thin sheets of nitinol, Acta Materialia, 55 (18) (2007) 6322-6330.

DOI: 10.1016/j.actamat.2007.07.038

Google Scholar

[4] K. Otsuka and C. M. Wayman, Introduction to shape memory materials, Cambridge University Press, New York, (1998).

Google Scholar

[5] T. Majid, G. Vijay and H. E. Mohammad, Shape memory alloy expandable pedicle screw to enhance fixation in osteoporotic bone: primary design and finite element simulation, J. Med. Devices, 6 (034501) (2012) 1-8.

DOI: 10.1115/1.4007179

Google Scholar

[6] D. Stoeckel, The shape memory effect - phenomenon, alloys and application, in Shape memory alloys for power systems EPRI, Fremont, California, (1995).

Google Scholar

[7] H. C. Donkersloot and J. H. N. van Vucht, Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition, J. Less-Common Metals, 20 (2) (1970) 83-91.

DOI: 10.1016/0022-5088(70)90092-5

Google Scholar

[8] M. H. Wu and L. McD. Schetky, Industrial applications for shape memory alloys, in International conference on shape memory and superelastic, Pacific Grove, California, (2000).

Google Scholar

[9] J.A. Shaw, C.B. Churchill, and M.A. Iadicola, Tips and tricks for characterizing shape memory alloy wire: part 1-differential scanning calorimetry and basic phenomena, Society of Experimental Mechanics, (2008).

DOI: 10.1111/j.1747-1567.2008.00410.x

Google Scholar

[10] T. Biggs, M. B. Cortie, M. J. Witcomb and L. A. Cornish, Martensitic transformations, microstructure, and mechanical workability of TiPt, Metallurgical and Mater. Ttrans. A, 32 (2001) 1881-1886.

DOI: 10.1007/s11661-001-0001-5

Google Scholar

[11] R. Mahlangu, M. J. Phasha, H. R. Chauke and P. E. Ngoepe, Structural, elastic and electronic properties of equiatomic PtTi as potential high-temperature shape memory alloy, Intermetallics, 33 (2013) 27-32.

DOI: 10.1016/j.intermet.2012.09.021

Google Scholar

[12] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. B, 136 (1964) 864-870.

Google Scholar

[13] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie, 220 (5-6) (2005) 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[14] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations - a reply, Phys. Rev. B, 16, (1977) 1748-1749.

DOI: 10.1103/physrevb.16.1748

Google Scholar

[15] Y. Yamabe-Mitarai, T. Hara, S. Miura and H. Hosoda, Shape memory effect and pseudoelasticity of TiPt, Intermetallics, 18 (12) (2010) 2275-2280.

DOI: 10.1016/j.intermet.2010.07.011

Google Scholar

[16] T. Biggs, M. B. Cortie, M. J. Witcomb and L. A. Cornish, Revised phase diagram for the Pt–Ti system from 30 to 60 at. % platinum, J. Alloys. Comp., 375 (2004) 120-127.

DOI: 10.1016/j.jallcom.2003.12.001

Google Scholar