[1]
S. Nxumalo, H. K. Chilkwanda and C. Machio, Phase transformation during sintering of mechanically alloyed TiPt, Adv. Metal. Int., (2010) 306-314.
Google Scholar
[2]
T. Anson, Shape memory alloys-medical applications, Materials World, 7 (12) (1999) 745-747.
Google Scholar
[3]
S. Daly , A. Miller, G. Ravichandran and K. Bhattacharya, An experimental investigation of crack initiation in thin sheets of nitinol, Acta Materialia, 55 (18) (2007) 6322-6330.
DOI: 10.1016/j.actamat.2007.07.038
Google Scholar
[4]
K. Otsuka and C. M. Wayman, Introduction to shape memory materials, Cambridge University Press, New York, (1998).
Google Scholar
[5]
T. Majid, G. Vijay and H. E. Mohammad, Shape memory alloy expandable pedicle screw to enhance fixation in osteoporotic bone: primary design and finite element simulation, J. Med. Devices, 6 (034501) (2012) 1-8.
DOI: 10.1115/1.4007179
Google Scholar
[6]
D. Stoeckel, The shape memory effect - phenomenon, alloys and application, in Shape memory alloys for power systems EPRI, Fremont, California, (1995).
Google Scholar
[7]
H. C. Donkersloot and J. H. N. van Vucht, Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition, J. Less-Common Metals, 20 (2) (1970) 83-91.
DOI: 10.1016/0022-5088(70)90092-5
Google Scholar
[8]
M. H. Wu and L. McD. Schetky, Industrial applications for shape memory alloys, in International conference on shape memory and superelastic, Pacific Grove, California, (2000).
Google Scholar
[9]
J.A. Shaw, C.B. Churchill, and M.A. Iadicola, Tips and tricks for characterizing shape memory alloy wire: part 1-differential scanning calorimetry and basic phenomena, Society of Experimental Mechanics, (2008).
DOI: 10.1111/j.1747-1567.2008.00410.x
Google Scholar
[10]
T. Biggs, M. B. Cortie, M. J. Witcomb and L. A. Cornish, Martensitic transformations, microstructure, and mechanical workability of TiPt, Metallurgical and Mater. Ttrans. A, 32 (2001) 1881-1886.
DOI: 10.1007/s11661-001-0001-5
Google Scholar
[11]
R. Mahlangu, M. J. Phasha, H. R. Chauke and P. E. Ngoepe, Structural, elastic and electronic properties of equiatomic PtTi as potential high-temperature shape memory alloy, Intermetallics, 33 (2013) 27-32.
DOI: 10.1016/j.intermet.2012.09.021
Google Scholar
[12]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. B, 136 (1964) 864-870.
Google Scholar
[13]
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie, 220 (5-6) (2005) 567-570.
DOI: 10.1524/zkri.220.5.567.65075
Google Scholar
[14]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations - a reply, Phys. Rev. B, 16, (1977) 1748-1749.
DOI: 10.1103/physrevb.16.1748
Google Scholar
[15]
Y. Yamabe-Mitarai, T. Hara, S. Miura and H. Hosoda, Shape memory effect and pseudoelasticity of TiPt, Intermetallics, 18 (12) (2010) 2275-2280.
DOI: 10.1016/j.intermet.2010.07.011
Google Scholar
[16]
T. Biggs, M. B. Cortie, M. J. Witcomb and L. A. Cornish, Revised phase diagram for the Pt–Ti system from 30 to 60 at. % platinum, J. Alloys. Comp., 375 (2004) 120-127.
DOI: 10.1016/j.jallcom.2003.12.001
Google Scholar