Preparation of Pt-Promoted Co/SiO2 Catalysts for CO Hydrogenation by Strong Electrostatic Adsorption (SEA)

Article Preview

Abstract:

Cobalt-based Fischer-Tropsch catalysts typically contain noble metals as reduction promoters to enhance the amount of the catalytically active metal in these catalysts after activation. The noble metal is typically co-impregnated with cobalt, which does not necessarily ensure the optimum contact between the noble metal and cobalt. The noble metal can be selectively deposited on the precursor of the catalytically active metal for the Fischer-Tropsch synthesis, if strong electrostatic adsorption (SEA) is the dominant mechanism. The point of zero charge of silica (Davisil 646) (PZC = 2-3) and that of Co3O4 (PZC = 9-10) differs significantly. This results in a pH region where it is theoretically possible to selectively deposit the noble metal onto Co3O4 using anionic exchange (e.g. using PtCl62- ). The effect of pH on the uptake of these metal anions was investigated and found that adsorption is favored at low pHs. The reduction characteristics of Co3O4/SiO2, promoted by SEA, were investigated by temperature programmed reduction (TPR) and thermal gravimetric analysis (TGA). The peak maxima for reduction temperature for both steps of the reduction of Co3O4 to CoO and of CoO to Co3O4 decrease in the promoted catalyst, the activation energy for the first step decreased from 84±11kJ/mol to 50kJ/mol upon promotion. The degree of reduction was also noted to increase from 48% in unpromoted Co/SiO2 to 56% and 84% in two different Pt-Co/SiO2 systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-364

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Jager, Developments in Fischer-Tropsch Technology, Stud. Surf. Sci. Catal., vol. 119, (1998).

Google Scholar

[2] A. Y. Khodakov, W. Chu, and P. Fongarland, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels., Chem. Rev., vol. 107, no. 5, p.1692–744, May (2007).

DOI: 10.1021/cr050972v

Google Scholar

[3] R. L. Espinoza, a. P. Steynberg, B. Jager, and a. C. Vosloo, Low temperature Fischer–Tropsch synthesis from a Sasol perspective, Appl. Catal. A Gen., vol. 186, no. 1–2, p.13–26, Oct. (1999).

DOI: 10.1016/s0926-860x(99)00161-1

Google Scholar

[4] S. Bessell, Support effects in cobalt-based fischer-tropsch catalysis, Appl. Catal. A Gen., vol. 96, no. 2, p.253–268, Mar. (1993).

DOI: 10.1016/0926-860x(90)80014-6

Google Scholar

[5] J. Girardon, a Lermontov, L. Gengembre, P. Chernavskii, a Gribovalconstant, and a Khodakov, Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer?Tropsch catalysts, J. Catal., vol. 230, no. 2, p.339–352, Mar. (2005).

DOI: 10.1016/j.jcat.2004.12.014

Google Scholar

[6] M. Kraum and M. Baerns, Fischer–Tropsch synthesis: the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance, Appl. Catal. A Gen., vol. 186, no. 1–2, p.189–200, Oct. (1999).

DOI: 10.1016/s0926-860x(99)00172-6

Google Scholar

[7] D. Schanke, S. Vada, E. A. Blekkan, A. M. Hilmen, A. Hoff, and A. Holmen, Study of Pt-Promoted Cobalt CO Hydrogenation Catalysts, J. Catal., vol. 156, p.85–95, (1995).

DOI: 10.1006/jcat.1995.1234

Google Scholar

[8] J. Girardon, E. Quinet, a Gribovalconstant, P. Chernavskii, L. Gengembre, and a Khodakov, Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer–Tropsch catalysts, J. Catal., vol. 248, no. 2, p.143–157, Jun. (2007).

DOI: 10.1016/j.jcat.2007.03.002

Google Scholar

[9] G. Jacobs, T. K. Das, Y. Zhang, J. Li, G. Racoillet, and B. H. Davis, Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Appl. Catal. A Gen., vol. 233, no. 1–2, p.263–281, Jul. (2002).

DOI: 10.1016/s0926-860x(02)00195-3

Google Scholar

[10] N. Tsubaki, S. Sun, and K. Fujimoto, Different Functions of the Noble Metals Added to Cobalt Catalysts for Fischer–Tropsch Synthesis, J. Catal., vol. 199, no. 2, p.236–246, Apr. (2001).

DOI: 10.1006/jcat.2001.3163

Google Scholar

[11] F. Diehl and A. Y. Khodakov, Promotion of cobalt Fischer-Tropsch catalysts with noble metals: A review, Oil Gas Sci. Technol., vol. 64, no. 1, p.11–24, (2009).

DOI: 10.2516/ogst:2008040

Google Scholar

[12] G. Jacobs, J. a Chaney, P. M. Patterson, T. K. Das, J. C. Maillot, and B. H. Davis, Fischer-Tropsch synthesis: study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ EXAFS of Co K and Pt LIII edges and XPS., J. Synchrotron Radiat., vol. 11, no. Pt 5, p.414–22, Sep. (2004).

DOI: 10.1107/s090904950401578x

Google Scholar

[13] L. Guczi, D. Bazin, I. Kovacs, L. Borko, Z. Schay, J. Lynch, P. Parent, C. Lafon, G. Stefler, Z. Koppany, and I. Sajo, Structure of Pt-Co/Al2O3 and Pt-Co/NaY Bimetallic Catalysts: Characterization by In Situ EXAFS, TPR, XPS and by Activity in CO (Carbon Monoxide) Hydrogenation, Top. Catal., vol. 20, no. 1–4, p.129–139, (2002).

DOI: 10.1023/a:1016363702307

Google Scholar

[14] C. J. Weststrate, a. M. Saib, and J. W. Niemantsverdriet, Promoter segregation in Pt and Ru promoted cobalt model catalysts during oxidation–reduction treatments, Catal. Today, vol. 215, p.2–7, Oct. (2013).

DOI: 10.1016/j.cattod.2013.01.009

Google Scholar

[15] L. Jiao and J. R. Regalbuto, The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: II. Mesoporous silica SBA-15, J. Catal., vol. 260, no. 2, p.342–350, Dec. (2008).

DOI: 10.1016/j.jcat.2008.09.023

Google Scholar

[16] J. P. Brunelle, Preparation of catalysts by metallic complex adsorption on mineral oxides, Pure Appl. Chem., vol. 50, no. 9–10, p.1211–1229, (1978).

DOI: 10.1351/pac197850091211

Google Scholar

[17] R. O. James and T. W. Healy, Adsorption of Hydrolyzable Metal Ions at the Oxide-Water Interface, J. Colloid Interface Sci., vol. 40, no. 1, (1972).

DOI: 10.1016/0021-9797(72)90174-9

Google Scholar

[18] X. Hao, L. Quach, J. Korah, W. . Spieker, and J. R. Regalbuto, The control of platinum impregnation by PZC alteration of oxides and carbon, J. Mol. Catal. A Chem., vol. 219, no. 1, p.97–107, Sep. (2004).

DOI: 10.1016/j.molcata.2004.04.026

Google Scholar

[19] S. Ardizzone, G. Spinolo, and S. Trasatti, The Point of Zero Charge of Co3O4 Prepared by Thermal Decomposition of Basic Cobalt Carbonate, Electrochem. Acta, vol. 40, no. 16, p.2683–2686, (1995).

DOI: 10.1016/0013-4686(95)00238-a

Google Scholar

[20] P. H. Tewari and A. B. Campbell, Temperature dependence of point of zero charge of cobalt and nickel oxides and hydroxides, J. Colloid Interface Sci., vol. 55, no. 3, p.531–539, Jun. (1976).

DOI: 10.1016/0021-9797(76)90063-1

Google Scholar

[21] M. L. Hair and W. Hertl, Acidity of surface hydroxyl groups, J. Phys. Chem., vol. 74, no. 1, p.91–94, Jan. (1970).

DOI: 10.1021/j100696a016

Google Scholar

[22] E. van Steen, G. S. Sewell, R. A. Makhothe, C. Micklethwaite, H. Manstein, M. de Lange, and C. T. O'Connor, TPR Study on the Preparation of Impregnated Co/SiO2 Catalysts, J. Catal., no. 162, p.220–229, (1996).

DOI: 10.1006/jcat.1996.0279

Google Scholar

[23] S. Sun, N. Tsubaki, and K. Fujimoto, The reaction performances and characterization of Fischer – Tropsch synthesis Co / SiO 2 catalysts prepared from mixed cobalt salts, vol. 202, p.121–131, (2000).

DOI: 10.1016/s0926-860x(00)00455-5

Google Scholar

[24] H. E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand. (1934)., vol. 57, no. 4, p.217, Oct. (1956).

DOI: 10.6028/jres.057.026

Google Scholar