Determination of Nonlinear Refractive Index and Two-Photon Absorption Coefficients of New Nanocomposite Materials Based on Biosilicates Using Z-Scan Method

Article Preview

Abstract:

Nonlinear refractive indexes and two-photon absorption coefficients of new biosilicate nanocomposite materials based on precursor tetrakis (2-hydroxyethyl) orthosilicate (Si-precursor THEOS) were determined by created portative automation measuring complex based on Z-scan technique. Influence of different additives on nonlinear optical properties such media is considered. Energy thresholds of forming filaments and the efficiency of conversion initial radiation in supercontinuum in the range 400-700 nm are considered.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1025-1026)

Pages:

776-781

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Pelton, J. Aizpurua and G. Bryant: Laser Phot. Rev. Vol. 2 (2008), p.136.

Google Scholar

[2] M. Ito, K. Imakita, M. Fujii, et al.: J. Phys. D. Appl. Phys. Vol. 43 (2010), p.505101.

Google Scholar

[3] D. Yan and S. Jing: Chinese Phys. Lett Vol. 27 (2010), p.024204.

Google Scholar

[4] K. Ogusu, J. Yamasaki, S. Maeda, et al.: Opt. Lett. Vol. 29 (2004), p.265.

Google Scholar

[5] I. Polyzos, G. Tsigaridas, M. Fakis, et al.: Chem. Monthly Vol. 132 (2001), p.169.

Google Scholar

[6] I. Polyzos, G. Tsigaridas, M. Fakis, et al.: Opt. Lett. Vol. 30 (2005), p.2654.

Google Scholar

[7] I. Wang, M. Bouriau, P.L. Baldeck, et al.: Optics Lett. Vol. 27 (2002), p.1348.

Google Scholar

[8] C.J. Brinker and G.W. Scherer: Sol–gel science, the physics and chemistry of sol–gel processing (Academic Press, Boston 1990).

DOI: 10.1002/adma.19910031025

Google Scholar

[9] E.S. Bliss, D.R. Speck and W.W. Simmons: Appl. Phys. Lett. Vol. 25 (1974), p.728.

Google Scholar

[10] M.J. Weber, D. Milam and W.L. Smith: Opt. Eng. Vol. 17 (1978), p.463.

Google Scholar

[11] S.R. Friberg and P.W. Smith: IEEE. J. Quantum. Elect. Vol. 23 (1987), p. (2089).

Google Scholar

[12] F. Louradour, E. Lopez-Lago, V. Couderc, et al.: Opt. Lett. Vol. 24 (1999), p.19.

Google Scholar

[13] A. Owyoung: IEEE. J. Quantum. Elect. Vol. 9 (1973), p.1064.

Google Scholar

[14] W. Williams, M. Soileau and W. Stryland: Opt. Commun. Vol. 50 (1984), p.256.

Google Scholar

[15] G. Boudebs and S. Cherukulappurath: Phys. Rev. A Vol. 69 (2004), p.053813.

Google Scholar

[16] A. Marcano, H. Maillotte, D. Gindre and D. Métin: Opt. Lett. Vol. 21 (1996), p.101.

Google Scholar

[17] R.A. Ganee and I.A. Kulagin: J. Opt. A Vol. 11 (2009), p.085001.

Google Scholar

[18] R. Ganeev and I. Kulagin: J. Opt. A Vol. 11 (2009), p.085001.

Google Scholar

[19] M. Sheik – Bahae, A.A. Said, T.H. Wei, D.J. Hagan and E.W. Van Stryland: IEEE. J. Quantum Elect Vol. 26 (1990), p.760.

DOI: 10.1109/3.53394

Google Scholar

[20] Y.N. Kulchin, S.S. Golik, D.Y. Proschenko, A.A. Chekhlenok, I.V. Postnova, A.Y. Mayor and Y. A Shchipunov: Quantum. Electron+ Vol. 43 (2013), p.370.

DOI: 10.4028/www.scientific.net/amr.677.3

Google Scholar

[21] D. Proschenko, A. Mayor, O. Bukin, S. Golik, A. Chekhlenok, I. Postnova, Y. Shchipunov and Y.N. Kulchin: Adv. Mater. Res Vol. 834 – 836 (2013), p.60.

DOI: 10.4028/www.scientific.net/amr.834-836.60

Google Scholar