Biphasic Enantioselective Partitioning of R,S-Omeprazole Enantiomers Using Chiral Extraction

Article Preview

Abstract:

Enantioselective partitioning of racemic omeprazole enantiomers was studied using a biphasic recognition chiral extraction system. Hydrophilic hydroxypropyl-ڂ-cyclodextrin in aqueous phase and hydrophobic D-tartaric acid hexyl ester in organic phase as chiral selectors which preferentially recognize (R)-omeprazole enantiomer and (S)-omeprazole enantiomer, respectively. Different experimental variable parameters could affect the chiral extraction efficiency. The largest distribution coefficients kS, kR and separation factor ځ were obtained at concentrations o f 0.1 mol/L HP-ڂ-CD and 0.2 mol/L D-tartaric acid hexyl ester, which were 47.38, 58.65 and 1.24, respectively. kR is always larger than kS when using different kinds of tartaric acid derivatives as chiral selectors in organic phase. The present study also reveal the mechanism of biphasic recognition chiral extraction for R,S-omeprazole enantiomers.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1030-1032)

Pages:

2334-2339

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Espinosa Bosch, A.J. Ruiz S ´anchez, F. S ´anchez Rojas, C. Bosch Ojeda: J. Pharm. Biomed. Anal. Vol. 44 (2007), p.831.

Google Scholar

[2] N.M. Maier, P. Franco, W. Lindner: J. Chromatogr. A Vol. 906 (2001), p.3.

Google Scholar

[3] J. Olsson, F. Stegander, N. Marlin, H. Wan, L.G. Blomberg: J. Chromatogr. A Vol. 1129 (2006), p.291.

Google Scholar

[4] U. Klotz: Int. J. Clin. Pharmacol. Ther. Vol. 44 (2006), p.297.

Google Scholar

[5] B.S. Sheu, A.W. Kao, H.C. Cheng, S.F. Hunag, T.W. Chen, C.C. Lu, J.J. Wu: Aliment Pharmacol. Ther. Vol. 21 (2005), p.283.

Google Scholar

[6] S. Andersson, S.G. Allenmark: J. Biochem. Biophys. Methods Vol. 54 (2002), p.11.

Google Scholar

[7] J. Samuelsson, R. Arnell, T. Fornstedt: J. Sep. Sci. Vol. 32 (2009), p.1491.

Google Scholar

[8] H. Kanazawa, A. Okada, M. Higaki, H. Yokota, F. Mashige, K. Nakahara: J. Pharm. Biomed. Anal. Vol. 30 (2003), p.1817.

Google Scholar

[9] Y. Zhang, K. Hidajat, K. Ray: Chem. Eng. Sci. Vol. 62 (2007), p.1364.

Google Scholar

[10] B. Tan, G.S. Luo, J.D. Wang: Sep. Purif. Technol. Vol. 53 (2007), p.330.

Google Scholar

[11] L.F.B. Malta, Y. Cordeiro, L.W. Tinoco, C.C. Campos, M.E. Medeiros, O.A.C. Antunes: Tetrahedron: Asymm. Vol. 19 (2008), p.1182.

Google Scholar

[12] G.W. Meindersma, T. van Schoonhoven, B. Kuzmanovic, A.B. de Haan: Chem. Eng. Process. Vol. 45 (2006), p.175.

Google Scholar

[13] K. W Tang, Y.Y. Chen, K.L. Huang, J.J. Liu: Tetrahedron: Asymm. Vol. 18 (2007), p.2399.

Google Scholar

[14] K.W. Tang, Y.Y. Chen, K.L. Huang, J.J. Liu: Sep. Purif. Technol. Vol. 62 (2008), p.681.

Google Scholar

[15] R. Lavie: AIChEJ. Vol. 54 (2008), p.957.

Google Scholar

[16] B. Schuur, A.J. Hallett, J.G.M. Winkelman, J.G. de Vries, H.J. Heeres: Org. Process Res. Dev. Vol. 13 (2009), p.911.

Google Scholar

[17] K.W. Tang, L.T. Song, Y.B. Liu, X.Y. Jiang, Y. Pan: Chem. Eng. J. Vol. 158 (2010), p.411.

Google Scholar