Synthesis of Oriented ZnO Nanofibers Using Electrospun Method on Si (100) Substrate

Article Preview

Abstract:

ZnO nanofibers on Si (100) were synthesized by electrospun and calcination process. The morphology, structure and optical performance were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and photoluminescence (PL) spectrum. XRD results indicated ZnO nanofibers on Si (100) wafer calcined at 600 °C had a preferred growth orientation of (002) direction. ZnO nanofibers calcinated at 600 °C had an excellent crystalline structure with the diameters ranging from 70 to 150 nm. Defect states in the ZnO nanofibers were observed, which resulted in the green emission in PL spectrum.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

1094-1098

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yong-Jin Kim, Chul-Ho Lee, Young Joon Hong et al., Appl. Phys. Lett. 89 (2006) 163128.

Google Scholar

[2] Guoqiang Zhang, Atsushi Nakamura, Toru Aoki et al., Appl. Phys. Lett. 89 (2006) 113112.

Google Scholar

[3] Xinghua Yang, Changlu Shao, Hongyu Guan, et al., Inrog. Chem. Comm. 7 (2004) 176-178.

Google Scholar

[4] Jiming Bao, Mariano A. Zimmler, Federico Capasso, et al., Nano Letters. 6 (2006) 1719-1722.

Google Scholar

[5] Andrzej Stafiniak, Bogusław Boratyński, Anna Baranowska-Korczyc et al., Sensors and Actuators B. 160 (2011) 1413-1418.

DOI: 10.1016/j.snb.2011.09.087

Google Scholar

[6] Vivek Dhas, Subas Muduli, Wonjoo Lee, et al., Appl. Phys. Lett. 93 (2008) 243108.

Google Scholar

[7] Yujie Li, Martin Feneberg, Anton Reiser, et al., J. App. Phys. 99 (2006) 054307.

Google Scholar

[8] Guozhen Shen, Yoshio Bando, and Cheol-Jin Lee, J. Phys. Chem. B. 109 (2005) 10578-10583.

Google Scholar

[9] M. V. Castro Meira, A. Ferreira da Silva, G. Baldissera, et al., J. Appl. Phys. 111 (2012) 123527.

Google Scholar

[10] L. Liao, D.H. Liu, J.C. Li et al., App. Surf. Sci. 240 (2005) 175-179.

Google Scholar

[11] Sujuan Wu, Jinhua Li, Shing-Chung Lo et al., Org. Electron. 13 (2012) 1569-1575.

Google Scholar

[12] Xinchang Wang, MinggangZhao, FangLiu et al., Ceram. Int. 39 (2013) 2883-2887.

Google Scholar

[13] Wei Tian , Tianyou Zhai , Chao Zhang Adv. Mater. 25 (2013) 4625-4630.

Google Scholar

[14] Zhenyi Zhang, Changlu Shao, Xinghua Li et al., Appl. Mater. & Interfaces. 2 (2010) 2915-2923.

Google Scholar

[15] Frederick Ochanda, Kevin Cho, Dickson Andala et al., Langmuir, 25 (2009) 7547-7552.

Google Scholar

[16] B. S. Kang, S. J. Pearton, and F. Ren, Appl. Phys. Lett. 90 (2007) 083104.

Google Scholar

[17] Z. W. Liu, C. W. Sun, J. F. Gu, and Q. Y. Zhang, Appl. Phys. Lett. 88 (2006) 251911.

Google Scholar

[18] Yanyan Chang, Nanhong Zhang, Mengke Zhuang et al., Proceedings of 2012 International Conference on Materials for Renewable Energy & Environment, 2012, 18-20 May, Beijing, China: 183-186.

Google Scholar

[19] Jae Young Park and Sang Sub Kim, J. Am. Ceram. Soc. 92 (2009) 1691-1694.

Google Scholar

[20] T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142 (1966) 570-574.

Google Scholar

[21] Ji Nan Zeng, Juay Kiang Low, Zhong Min Ren et al., Appl. Surf. Sci. 197 (2002) 362-367.

Google Scholar

[22] Puneet Singh, Kunal Mondal, Ashutosh Sharma, J. Colloid Interface Sci. 394 (2013) 208-215.

Google Scholar

[23] Ye Zhang, Hongbo Jia, Rongming Wang et al. Appl. Phys. Lett. 82 (2003) 4631-4633.

Google Scholar

[24] K. Vanhausden, WL Warren, CH Seager et al., J. Appl. Phys. 79 (1996) 7983-7990.

Google Scholar