Synthesis and Optical Properties of Asymmetric Naphthylmethylene 1,3,4-Oxadiazole Derivatives

Article Preview

Abstract:

Asymmetric 2-p-nitrophenyl-5-naphthylmethylene-1,3,4-oxadiazole and 2-p-aminophenyl-5-naphthylmethylene-1,3,4-oxadiazole were synthesized and characterized by IR、1HNMR and MS analysis, and their optical properties were detected using UV-vis absorption spectroscopy and fluorescence spectroscopy. The existence of electron-withdrawing oxadiazole units causes a significant bathochromic shift of the UV absorption maximum. The largest UV-absorption peak of target compounds is in the range of 298-317 nm, and a new emission band at 402 nm is formed. The fluorescence intensity is gradually enhanced, which strengthens the intramolecular charge transfer effect between the electron-withdrawing oxadiazole and electron-donating aniline.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

1109-1113

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ie, M. Ueta, M. Nitani, N. Tohnai, M. Miyata, H. Tada and Y. Aso: Chem. Mater. Vol. 24 (2012), p.3285.

Google Scholar

[2] C.H. Zhang, L.F. Li, H.J. Wu, Z.X. Liu, J.F. Li, G.M. Zhang , G.M. Wen, S.M. Shuang, C. Dong, Martin M.F. Choi: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Vol. 102 (2013), p.256.

DOI: 10.1016/j.saa.2012.10.005

Google Scholar

[3] C.K. Kwak, C.H. Lee and T.S. Lee: Tetrahedron Letters Vol. 48 (2007), p.7788.

Google Scholar

[4] J. Wang, R. Wang, J. Yang, Z. Zheng, M. Carducci, T. Cayou: J. Am. Chem. Soc. Vol. 123 (2001), p.177.

Google Scholar

[4] M. Ananth Reddy, G. Mallesham, A. Thomas, K. Srinivas, V. Jayathirtha Rao, K. Bhanuprakash, L. Giribabu, R. Grover, A. Kumar, M. N. Kamalasanan, R. Srivastava: Synthetic Metals Vol. 161 (2011) , p.869.

DOI: 10.1016/j.synthmet.2011.02.015

Google Scholar

[5] F. Liang, J. Chen, L. Wang, D. Ma, X. Jing, F. Wang: J. Mater. Chem. Vol. 13 (2003), p.2922.

Google Scholar

[6] G. Zhou, Y. Cheng, L. Wang, X. Jing, F. Wang: Macromolecules Vol. 38(2005), p.2148.

Google Scholar

[7] H.H. Sung, H.C. Lin: Macromolecules Vol. 37 (2004), p.7945.

Google Scholar

[8] Y. Cheng, L. Chen, X. Zou, J. Song, W. Zhiliu: Polymer Vol. 47(2006), p.435.

Google Scholar

[9] W. Beker, P. Szarek, L. Komorowski and J. Lipinski: J. Phys. Chem. A Vol. 117 (2013), p.1596.

Google Scholar

[10] O. Bolton, J. Kim: J. Mater. Chem. Vol. 17 (2007), p. (1981).

Google Scholar

[11] M.A. Reddy, A. Thomas, K. Srinivas, V.J. Rao, K. Bhanuprakash, B. Sridhar, A. Kumar, M.N. Kamalasanan, R. Srivastava: J. Mater. Chem. Vol. 19 (2009), p.6172.

DOI: 10.1039/b905808g

Google Scholar

[12] B.K. Paul, A. Samanta, S. Kar, N. Guchhait, J. Lumin: Vol. 130 (2010), p.1258.

Google Scholar

[13] K. Rotkiewiz, W. Rettig, G. Kohler: Chem. Phys. Vol. 307 (2004), p.45.

Google Scholar

[14] N.S. Habib, K.A. Ismail, A.A. El-Tombary: Pharmazie Vol. 55 (2000), p.495.

Google Scholar

[15] R. Luchowski: Chem. Phys. Lett. Vol. 501 (2011), p.572.

Google Scholar

[16] P. Purkayastha, N. Chattopadhyay: J. Mol. Struct. Vol. 604 (2002), p.87.

Google Scholar

[17] H. Fujiwara, Y. Sugishima, K. Tsujimoto: Tetra Lett. Vol. 49 (2008), p.7200.

Google Scholar