Determination of Rhodium in Rhodium-Loaded Carbon Catalysts Using Microwave-Assisted Sample Digestion and ICP-OES

Article Preview

Abstract:

A novel method for the determination of rhodium in rhodium-loaded carbon catalyst samples was established by inductively coupled plasma atomic emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the limits of detection (LODs) of Rh for tested solutions were 9 ng mL-1. The relative standard deviations (RSDs) for Rh were 2.11 (CRh = 1 mg L-1, n = 7). The linear ranges of calibration graphs for Rh were 0 ~ 150.00 mg L-1. The proposed method was applied to determine the practical samples with good recoveries and satisfactory results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

53-56

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Timmer, D. Thewissen and M.W. Harry: Recl. Trav. Chim. Pays-Bas Vol. 109 (1990), p.87.

Google Scholar

[2] K.H. Park, K. Jang and H.J. Kim: Angew. Chem. Int. Ed Vol. 46 (2007), p.1152.

Google Scholar

[3] R. Schierl: J. Microchem Vol. 67 (2000), p.245.

Google Scholar

[4] X. Dai, C. Koeberl and H. Froschl: Anal. Chim. Acta Vol. 436 (2001), p.79.

Google Scholar

[5] J. Ye, S. Liu, M. Tian, W. Li, B. Hu, W. Zhou and Q. Jia: Talanta Vol. 118 (2014), p.231.

Google Scholar

[6] S.Z. Mohammadi, H. Hamidian and Z. Moeinadini: Cent. Eur. J. Chem Vol. 11 (2013), p.1749.

Google Scholar

[7] J. Tilch, M. Schuster, M. Schwarzer and Fresenius' J: Anal. Chem Vol. 367 (2000), p.450.

Google Scholar

[8] P. Kovacheva and R. Djingova: Anal. Chim. Acta Vol. 464 (2002), p.7.

Google Scholar

[9] I. Jarvis, M.M. Totland and K.E. Jarvis: Analyst Vol. 122 (1997), p.19.

Google Scholar

[10] K. Kanitsar, G. Koellensperger, S. Hann, A. Limbeck, H. Puxbaum and G. Stingeder: J. Anal. Atom. Spectrom Vol. 18 (2003), p.239.

DOI: 10.1039/b212218a

Google Scholar

[11] S. Zimmermann, C.M. Menzel, Z. Berner, J. -D. Eckhardt, D. Stüben, F. Alt, J. Messerschmidt, H. Taraschewski and B. Sures: Anal. Chim. Acta Vol. 439 (2001), p.203.

DOI: 10.1016/s0003-2670(01)01041-8

Google Scholar

[12] J.D. Whiteley and F. Murray: Sci. Total Environ Vol. 317 (2003), p.121.

Google Scholar

[13] B. Sures, S. Zimmermann, J. Messerschmidt, A. Von Bohlen and F. Alt: Environ. Pollut Vol. 113 (2001), p.341.

Google Scholar

[14] B. Sures, S. Zimmermann, C. Sonntag, D. Stuben and H. Taraschewski: Environ. Pollut Vol. 122 (2003), p.401.

Google Scholar

[15] T. Meisel, N. Fellner and J. Moser: J. Anal. Atom. Spectrom Vol. 18 (2003), p.720.

Google Scholar

[16] D. Cinti, M. Angelone, U. Masi and C. Cremisini: Sci. Total Environ Vol. 293 (2002), p.47.

Google Scholar

[17] R. Djingova, H. Heidenreich, P. Kovacheva and B. Markert: Anal. Chim. Acta Vol. 489 (2003), p.245.

Google Scholar

[18] K. Boch, M. Schuster, G. Risse and M. Schwarzer: Anal. Chim. Acta Vol. 459 (2002), p.257.

Google Scholar

[19] O.V. Borisov, D.M. Coleman, K.A. Oudsema and R.O. Carter III: J. Anal. Atom. Spectrom Vol. 12 (1997), p.239.

Google Scholar

[20] T.M. Malyutina, T.Y. Alekseeva, A.V. D'yachkova, G.S. Kudryavtseva, L.D. Berliner and Y.A. Karpov: Inorganic. Materials Vol. 46 (2010), p.1479.

Google Scholar