Study on the Bacteriostasis of Nano-Silver against the Aspergillus from Illed Plants

Article Preview

Abstract:

The bacteriostatic effect of nanosilve is researching purposes. Five strains from Aspergillus was used as the experimented materials. The concentration of nanosilver is180 mg / L. 0.3% carbendazim and 0.3% chlorothalonil was used as compering bacteriostatic agents. The results was gained that nanosilve has inhibiting on the growth, spore’s germination, and effecting on bacteriostasis ring and shape of the Aspergillus. The bacteriostasis of nanosilve is very better than blank comparing experimert. For the bacteriostdsis of nanosilve on Aspergillus, there is differentation among strains. The bacteriostdsis of carbendaim is better than chlorothdonil. The batteriostdsis of chlorothdonil is very better than nanosilve. The bacteriostdsis principle is that nanosilve disrupts permeation of cell membrance of Aspergillus.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

410-418

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Karimi, S. Minaei, M. Almassi and A.R. Shahverdi, Application of silver nano-particles for protection of seeds in different soils, African Journal of Agricultural Research, 7 (2012) 1863-1869.

DOI: 10.5897/ajar11.1150

Google Scholar

[2] M. z. Si, F. Yan, P. Jialin, and so on, Electrolytic Preparation of Nano Silver Sol and SERS Activity Study, Spectroscopy and Spectral Analysis, 27 (2007) 951-952.

Google Scholar

[3] K. Zhang, F. Li, S. Imazato, L. Cheng, H. Liu, D.D. Arola and H.H. Xu, Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101 (2013).

DOI: 10.1002/jbm.b.32898

Google Scholar

[4] L. Cheng, K. Zhang, M.D. Weir, H. Liu, X. Zhou and H.H. Xu, Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks, Dental Materials, 29 (2013) 462-472.

DOI: 10.1016/j.dental.2013.01.011

Google Scholar

[5] A.M. Tugulea, D. Bérubé, M. Giddings, F. Lemieux, J. Hnatiw, J. Priem and M.L. Avramescu, Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation, Environmental Science and Pollution Research, (2014).

DOI: 10.1007/s11356-014-2508-5

Google Scholar

[6] N. Karimi, S. Minaei, M. Almassi and A.R. Shahverdi, Application of silver nano-particles for protection of seeds in different soils, African Journal of Agricultural Research, 7 (2012), 1863-1869.

DOI: 10.5897/ajar11.1150

Google Scholar

[7] W.G. Rathnayake, H. Ismail, A. Baharin, A.G. Darsanasiri and S. Rajapakse, Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties, Polymer Testing, 31 (2012) 586-592.

DOI: 10.1016/j.polymertesting.2012.01.010

Google Scholar

[8] S.H. Shin and M.K. Ye, The effect of nano-silver on the activation of nasal polyp epithelial cells by Alternaria, Der P1 and staphylococcal enterotoxin B, International immunopharmacology, 11 (2011) 1691-1696.

DOI: 10.1016/j.intimp.2011.05.028

Google Scholar

[9] D. Singh, V. Rathod, S. Ninganagouda, J. Hiremath, A.K. Singh and J. Mathew, Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus, Bioinorganic chemistry and applications, (2014).

DOI: 10.1155/2014/408021

Google Scholar

[10] R.R. Nayak, N. Pradhan, D. Behera, K.M. Pradhan, S. Mishra, L.B. Sukla and B.K. Mishra, Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization, Journal of Nanoparticle Research, 13 (2011) 3129-3137.

DOI: 10.1007/s11051-010-0208-8

Google Scholar

[11] N. Soni and S. Prakash, Factors Affecting the Geometry of Silver Nanoparticles Synthesis in Chrysosporium Tropicum and Fusarium Oxysporum, American Journal of Nanotechnology, 2 (2012) 112.

DOI: 10.3844/ajnsp.2011.112.121

Google Scholar

[12] K. Lamsal, S.W. Kim, J.H. Jung, Y.S. Kim, K.S. Kim and Y.S. Lee. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin, Mycobiology, 39 (2011) 26-32.

DOI: 10.4489/myco.2011.39.1.026

Google Scholar

[13] S.H. Moussa, A.A. Tayel, A.S. Alsohim and R.R. Abdallah, Botryticidal Activity of Nanosized Silver-Chitosan Composite and Its Application for the Control of Gray Mold in Strawberry, Journal of food science, 78 (2013) M1589-M1594.

DOI: 10.1111/1750-3841.12247

Google Scholar

[14] J.H. Jung, S.W. Kim, J.S. Min, Y.J. Kim, K. Lamsal, K.S. Kim and Y.S. Lee, The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum, Mycobiology, 38(2010) 39-45.

DOI: 10.4489/myco.2010.38.1.039

Google Scholar

[15] S.W. Kim, J.H. Jung, K. Lamsal, Y.S. Kim, S.J. Sim, H.S. Kim and Y.S. Lee, Control efficacy of nano-silver liquid on Oak wilt caused by Raffaelea sp. in the field, Research in Plant Disease, 17 (2011) 136-141.

DOI: 10.5423/rpd.2011.17.2.136

Google Scholar

[16] K. Lamsal, S.W. Kim, J.H. Jung, Y.S. Kim, K.S. Kim and Y.S. Lee, Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field, Mycobiology, 39 (2011) 194-199.

DOI: 10.5941/myco.2011.39.3.194

Google Scholar

[17] J.M. Gilsenan, J. Cooley and P. Bowyer, CADRE: the Central Aspergillus Data REpository 2012. Nucleic acids research, gkr971 (2011).

DOI: 10.1093/nar/gkr971

Google Scholar

[18] S.J. Howard and M.C. Arendrup, Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection, Medical Mycology, 49(2011) S90-S95.

DOI: 10.3109/13693786.2010.508469

Google Scholar

[19] B. Wang, X. Yang, H. Zeng, H. Liu, T. hou, B. Tan, J. Yuan, L. Guo, D. Qiu, The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco, 93 (2012).

DOI: 10.1007/s00253-011-3405-1

Google Scholar

[20] Z. Yin, Y. Li, X. Han, F. Shen, Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots, journal. pone. 7(2012): e35765. doi: 10. 1371/ 0035765.

DOI: 10.1371/journal.pone.0035765

Google Scholar

[21] Z. Zhang, Y. Song, C.M. Liu, B.P. Thomma, Mutational analysis of the Ve1 immune receptor that mediates Verticillium resistance in tomato, journal. pone,  9 (2014): e99511. doi: 10. 1371/ 0099511.

DOI: 10.1371/journal.pone.0099511

Google Scholar

[22] L.L. Burpee, J.R. Bloom, The influence of Pratylenchus penetrans on the incidence and severity of verticillium wilt of potato, J Nematol. 10 (1978) 95-9.

Google Scholar

[23] L. Tyvaert, S.C. França, J. Debode, M. Höfte, The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt, J. Appl Microbiol. 116(2014) 1563-71.

DOI: 10.1111/jam.12481

Google Scholar

[24] P. Inderbitzin, R.M. Bostock, R.M. Davis, T. Usami, H.W. Platt, K.V. Subbarao, Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species, journal. pone, 6 (2011).

DOI: 10.1371/journal.pone.0028341

Google Scholar

[25] P. Inderbitzin, R.M. Davis, R.M. Bostock, K.V. Subbarao, Theascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range, journal. pone, 6 (2011): e18260. doi: 10. 1371/ 0018260.

DOI: 10.1371/journal.pone.0018260

Google Scholar

[26] M. Honma, S. Kudo, N. Takada, K. Tanaka, T. Miura, M. Hashimoto, Novel neofusapyrones isolated from Verticillium dahliae as potent antifungal substances, Bioorg Med Chem Lett, 20(2010) 709-712.

DOI: 10.1016/j.bmcl.2009.11.063

Google Scholar

[27] M.K. Rai, S.D. Deshmukh, A.P. Ingle and A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria, Journal of applied microbiology, 112 (2012) 841-852.

DOI: 10.1111/j.1365-2672.2012.05253.x

Google Scholar

[28] Z.K. Xia, Q.H. Ma, S.Y. Li, D.Q. Zhang, L. Cong, Y.L. Tian and R.Y. Yang, The antifungal effect of silver nanoparticles on Trichosporon asahii. Journal of Microbiology, Immunology and Infection, (2014).

DOI: 10.1016/j.jmii.2014.04.013

Google Scholar

[29] L. Sintubin, B. De Gusseme, P. Van der Meeren, B.F. Pycke, W. Verstraete and N. Boon, The antibacterial activity of biogenic silver and its mode of action, Applied microbiology and biotechnology, 91(2011) 153-162.

DOI: 10.1007/s00253-011-3225-3

Google Scholar

[30] K. Lamsal, S.W. Kim, J.H. Jung, Y.S. Kim, K.S. Kim and Y.S. Lee, Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology, 39 (2011) 194-199.

DOI: 10.5941/myco.2011.39.3.194

Google Scholar

[31] T.D. Bugg, D. Braddick, C.G. Dowson and D.I. Roper, Bacterial cell wall assembly: still an attractive antibacterial target, Trends in biotechnology, 29 (2011) 167-173.

DOI: 10.1016/j.tibtech.2010.12.006

Google Scholar

[32] T. Watanabe, Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species, CRC press, (2011).

DOI: 10.1201/9781420040821

Google Scholar

[33] I.V. Ene, A.K. Adya, S. Wehmeier, A.C. Brand, D.M. MacCallum, N.A. Gow and A.J. Brown, Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen, Cellular microbiology, 14 (2012) 1319-1335.

DOI: 10.1111/j.1462-5822.2012.01813.x

Google Scholar