Energetic Studies on the B Effect on the Oxidation of γ-TiAl Alloys

Article Preview

Abstract:

The energetic study of B effects on the oxidation of γ-TiAl alloys are performed by using the first-principles method based on Density Functional Theory (DFT) in this paper. The surface and interface segregatation of B as well as of the surface adsorption of O are discussed. B is found to preferentially segregat to TiAl subsurface with respect to γ-TiAl bulk. The B segregation at surface decreases oxygen coverage in the initial oxidation process of γ –TiAl alloys, thereby it is beneficial to the decrease of the growth of γ–TiAl alloys oxide film. In the initial oxidation process, oxygen prefers to stay in the vicinity of surface Ti atoms, and B addition is beneficial for the decrease of the growth of A12O3 and TiO2. After the formation of Al2O3 oxide film, B is energetically favoured stayed at interstitial site of α-Al2O3 (0001)/γ-TiAl (111) interface, and enhances the adhesion of this interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-33

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. W. Kim and D. M. Dimiduk: JOM Vol. 43 (1991), p.40.

Google Scholar

[2] A. Rahmel, W. J. Quadakkers and M. Schutze: Mater. Corros. Vol. 46(1995), p.271.

Google Scholar

[3] Y. Shid and H. Anada: Mater. Trans. JIM Vol. 35(1994), p.623.

Google Scholar

[4] H. E. Zschau, V. Gauthier, G. Schumacher, F. Dettenwanger, M. Schutze, H. Baumann, K. Bethge and M. Graham: Oxid. Met. Vol. 59(2003), p.183.

DOI: 10.1023/a:1023030302118

Google Scholar

[5] G. Schumacher, F. Dettenwanger, M. Schütze, A. Iberl and D. Reil: Oxid. Met. Vol. 54 (2000), p.317.

DOI: 10.1023/a:1004606513758

Google Scholar

[6] Y. Shida and H. Anada: Oxid. Met. Vol. 45(1996), p.197.

Google Scholar

[7] M. Yoshihara, S. Taniguchi and Y. C. Zhu: Metall. Mater. Trans. Vol. 34A (2003), p.2253.

Google Scholar

[8] H. Li, S. Q. Wang and H. Q. Ye: J. Mater. Sci. Technol. Vol. 25(2009), p.569.

Google Scholar

[9] S. Y. Liu, J. X. Shang, F. H. Wang and Y. Zhang: J. Phys.: Condens. Matter. Vol. 21 (2009), pp.225005-1.

Google Scholar

[10] X. X. Wu, Q. E. Wang, F. H. Wang, Y. S. Zhou: Acta. Phys. Sin. Vol. 59(2010), p.7278.

Google Scholar

[11] M. D. Segall, P. L. D. Lndan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne: J. Phy.: Condens. Matter. Vol. 14 (2002), p.2717.

Google Scholar

[12] M. Marlo, V. Milman: Phys. Rev. B Vol. 62(2000), p.2899.

Google Scholar

[13] H. J. Monkhorst, J. D. Pack: Phys. Rev. B Vol. 13(1976), p.5188.

Google Scholar

[14] B. G. Pfrommer, M. Cote, S. G. Louie and M. L. Cohen: J. Comput. Phys. Vol. 131(1997), p.233.

Google Scholar

[15] E. A. Brandes: Smithells Metal Reference Book (Butterworth, London, 1983).

Google Scholar

[16] H. D. Amour, D. Schiferl, W. Denner, H. Schulz, W. B. Holzapfel: J. Appl. Phys. Vol. 49(1978), p.4411.

Google Scholar

[17] M. R. Shanabarger: Appl. Surf. Sci. Vol. 134(1998), p.179.

Google Scholar

[18] A. Christensen: Phys. Rev. B Vol. 62(2000), p.16968.

Google Scholar