High Performance LaCo0.6Ni0.4O3-δ Cathode Contact Material for Intermediate Temperature Solid Oxide Fuel Cells

Article Preview

Abstract:

LaCo0.6Ni0.4O3-δ (LCN) as cathode contact material (CCM) for application in solid oxide fuel cell (SOFC) is studied in this paper. LCN is prepared through the polymeric steric entrapment precursor route with polyvinyl alcohol (PVA) as the entrapment agent and then calcined at 800 °C and 1100 °C for 3 h respectively. Polished SUS430 pellets heated at 800 °C for 6 days as well as the untreated ones are used as interconnect. The assembly of LCN calcined at 800 °C with pretreated SUS430 at 800 °C for 6 days exhibit the best performance of a low and stable ASR value about 112 mΩ cm2 at the end of the 200 h test. The calcination temperature and the pretreatment of interconnect are considered to be crucial factors affecting the ASR property of LCN CCM for application in stack.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-36

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.D. Wachsman, K.T. Lee, Science, 334 (2011) 935-939.

Google Scholar

[2] S.P. Jiang, Y. Zhen, Solid State Ionics, 179 (2008) 1459-1464.

Google Scholar

[3] S. Koch, Solid State Ionics, 168 (2004) 1-11.

Google Scholar

[4] W. Schäfer, A. Koch, U. Herold-Schmidt, D. Stolten, Solid State Ionics, 86 (1996) 1235-1239.

Google Scholar

[5] Z. Lu, G. Xia, J.D. Templeton, X. Li, Z. Nie, Z. Yang, J.W. Stevenson, Electrochemistry Communications, 13 (2011) 642-645.

Google Scholar

[6] Z. Yang, G. Xia, P. Singh, J.W. Stevenson, Journal of Power Sources, 155 (2006) 246-252.

Google Scholar

[7] X. Montero, F. Tietz, D. Stöver, M. Cassir, I. Villarreal, Journal of Power Sources, 188 (2009) 148-155.

Google Scholar

[8] M.R. Ardigò, A. Perron, L. Combemale, O. Heintz, G. Caboche, S. Chevalier, Journal of Power Sources, 196 (2011) 2037-(2045).

DOI: 10.1016/j.jpowsour.2010.09.063

Google Scholar

[9] Y. Zhen, S.P. Jiang, Journal of Power Sources, 180 (2008) 695-703.

Google Scholar

[10] W. Zhang, F. Wang, K. Wang, J. Pu, B. Chi, L. Jian, International Journal of Hydrogen Energy, 37 (2012) 17253-17257.

Google Scholar

[11] L.T. Wilkinson, J.H. Zhu, Journal of The Electrochemical Society, 156 (2009) B905.

Google Scholar

[12] F. Wang, D. Yan, W. Zhang, B. Chi, J. Pu, L. Jian, International Journal of Hydrogen Energy, 38 (2013) 646-651.

Google Scholar

[13] M. Hrovat, N. Katsarakis, K. Reichmann, S. Bernik, D. Kus̆c̆er, J. Holc, Solid State Ionics, 83 (1996) 99-105.

Google Scholar

[14] M.C. Tucker, L. Cheng, L.C. DeJonghe, Journal of Power Sources, 196 (2011) 8313-8322.

Google Scholar

[15] H. Kurokawa, Solid State Ionics, 168 (2004) 13-21.

Google Scholar

[16] T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State Ionics, 143 (2001) 131-150.

Google Scholar

[17] M.C. Tucker, L. Cheng, L.C. DeJonghe, Journal of Power Sources, 196 (2011) 8435-8443.

Google Scholar

[18] B. Hua, J. Pu, F. Lu, J. Zhang, B. Chi, L. Jian, Journal of Power Sources, 195 (2010) 2782-2788.

Google Scholar

[19] B. Hua, Y. Kong, W. Zhang, J. Pu, B. Chi, L. Jian, Journal of Power Sources, 196 (2011) 7627-7638.

Google Scholar

[20] T. Horita, Y. Xiong, H. Kishimoto, K. Yamaji, N. Sakai, H. Yokokawa, Journal of Power Sources, 131 (2004) 293-298.

DOI: 10.1016/j.jpowsour.2003.10.017

Google Scholar