Synthesis, Characterizations and Photocatalytic Activity of Mesoporous TiO2 Using Typha Latifolia as Template

Article Preview

Abstract:

Typha latifolia were successfully used as template to synthesize mesoporous titania and silica with efficient photocatalytic activity under solar and visible light. Both two titania and silica samples were characterized by a combination of various physicochemical techniques, such as, N2 adsorption/ desorption isotherm, diffuse reflectance UV-vis, and X-ray diffraction. It was found that both two synthesized samples exhibited similar morphologies to the original templates. The presence of the residual carbon species of mesoporous titania and silica strongly affects their photocatalytic activity. The photoactivity of P25 TiO2 could not almost exhibit while both mesoporous titania and silica samples exhibited varied photoactivities for dyes under visible light, due to the presence of the residual carbon species. Moreover, as a whole the titania sample enhanced the higher photocatalytic activity than the silica sample under both solar and visible light.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

495-502

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. N. Huo, J. Zhang, M. Miao, Y. Jin, Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances, Appl. Catal. B 111-112 (2012) 334-341.

DOI: 10.1016/j.apcatb.2011.10.016

Google Scholar

[2] Y. Park, S. H. Lee, S. O. Kang, W. Y. Choi, Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light, Chem. Commun. 46 (2010) 2477-2479.

DOI: 10.1039/b924829c

Google Scholar

[3] Z. Y. Liu, X. T. Zhang, S. Nisimoto, T. Murakami, A. Fujishima, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays, Environ. Sci. Technol. 42 (2008) 8547-8551.

DOI: 10.1021/es8016842

Google Scholar

[4] J. M. Wua, X. M. Song, M. Yan, Alkaline hydrothermal synthesis of homogeneous titania microspheres with urchin-like nanoarchitectures for dye effluent treatments, J. Hazard. Mater. 194 (2011) 338-344.

DOI: 10.1016/j.jhazmat.2011.07.110

Google Scholar

[5] T. Fan, S. K. Chow, D. Zhang, Biomorphic mineralization: from biology to materials, Prog. Mater. Sci. 54 (2009) 542-659.

Google Scholar

[6] M. W. Anderson, S. M. Holmes, N. Hanif, C. S. Cundy, Hierarchical pore structures through diatom zeolitization, Angew. Chem. Int. Ed. 39 (2000) 2707-2710.

DOI: 10.1002/1521-3773(20000804)39:15<2707::aid-anie2707>3.0.co;2-m

Google Scholar

[7] Y. Kim, Small structures fabricated using ash-forming biological materials as templates, Biomacromolecules 4 (2003) 908-913.

DOI: 10.1021/bm0257558

Google Scholar

[8] S. Zhu, D. Zhang, Z. Li, H. Furukawa, Z. Chen, Precision replication of hierarchical biological structures by metal oxides using a sonochemical method, Langmuir 24 (2008) 6292-6299.

DOI: 10.1021/la7037153

Google Scholar

[9] D. Zhang, L. Qi, Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes, Chem. Commun. 21 (2005) 2735-2737.

DOI: 10.1039/b501933h

Google Scholar

[10] H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, N. Negishi, Preparation of TiO2 fibers with well-organized structures, J. Mater. Chem. 10 (2000) 2005-(2006).

DOI: 10.1039/b004543h

Google Scholar

[11] S. Chia, J. Urano, F. Tamanoi, B. Dunn, J. I. Zink, Patterned Hexagonal Arrays of Living Cells in Sol-Gel Silica Films, J. Am. Chem. Soc. 122 (2000) 6488-6489.

DOI: 10.1021/ja0011515

Google Scholar

[12] J. G. Huang, T. Kunitake, S. Onoue, A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle, Chem. Commun. 8 (2004) 1008-1009.

DOI: 10.1039/b401071j

Google Scholar

[13] J. G. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake, Nanotubular SnO2 Templated by Cellulose Fibers: Synthesis and Gas Sensing, Chem. Mater. 17 (2005) 3513-3518.

DOI: 10.1021/cm047819m

Google Scholar

[14] J. G. Huang, T. Kunitake, Nano-Precision Replication of Natural Cellulosic Substances by Metal Oxides, J. Am. Chem. Soc. 125 (2003) 1183411835.

DOI: 10.1021/ja037419k

Google Scholar

[15] S. R. Hall, H. Bolger, S. Mann, Morphosynthesis of complex inorganic forms using pollen grain templates, Chem. Commun. 22 (2003) 2784-2785.

DOI: 10.1039/b309877j

Google Scholar

[16] F. C. Meldrum, R. Seshadri, Porous gold structures through templating by echinoid skeletal plates, Chem. Commun. 1 (2000) 29-30.

DOI: 10.1039/a907074e

Google Scholar

[17] T. Ota, M. Imaeda, H. Takase, M. Kobayashi, N. Kinoshita, T. Hirashita, H. Miyazaki, Y. Hikichi, Porous Titania Ceramic Prepared by Mimicking Silicified Wood, J. Am. Ceram. Soc. 83 (2000) 1521-1523.

DOI: 10.1111/j.1151-2916.2000.tb01421.x

Google Scholar

[18] A. Zampieri, G. T. P. Mabande, T. Selvam, W. Schwieger, A. Rudolph, R. Hermann, H. Sieber, P. Greil, Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors, Mater. Sci. Engin: C 26 (2006).

DOI: 10.1016/j.msec.2005.08.036

Google Scholar

[19] A. Shahbazi, H. Younesia, A. Badiei, Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column, Chem. Engin. J. 168 (2011).

DOI: 10.1016/j.cej.2010.11.053

Google Scholar

[20] Y. Jiang, Q. Gao, H. Yu, Y. Chen, F. Deng, Intensively competitive adsorption for heavy metal ions by PAMAM–SBA-15 and EDTA–PAMAM–SBA-15 inorganic-organic hybrid materials, Microporous Mesoporous Mater. 103 (2007) 316-324.

DOI: 10.1016/j.micromeso.2007.02.024

Google Scholar

[21] C. Anderson, A. J. Bard, An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis, J. Phys. Chem. 99 (1995) 9882-9885.

DOI: 10.1021/j100024a033

Google Scholar

[22] Y. C. Miao, Z. B. Zhai, J. He, B. Li, J. J. Li, J. Q. Wang, Synthesis, characterizations and photocatalytic studies of mesoporous titania prepared by using four plant skins as templates, Mater. Sci. Engin. C 30 (2010) 839-846.

DOI: 10.1016/j.msec.2010.03.020

Google Scholar

[23] G. Socrates, Infrared and Raman Characteristic Group Frequencies: tables and charts, 3rd ed., John Wiley & Sons, Ltd, (2004).

DOI: 10.1002/jrs.1238

Google Scholar

[24] D. A. Palmer , R. V. Eldik, The chemistry of metal carbonato and carbon dioxide complexes, Chem. Rev. 83 (1983) 651-731.

DOI: 10.1021/cr00058a004

Google Scholar

[25] S. J. Yu, H. J. Yun, Y. H. Kim, J. Yi, Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation, Appl. Catal. B, 144 (2014) 893-899.

DOI: 10.1016/j.apcatb.2013.08.030

Google Scholar

[26] R. Q. Cabrera, A. Mills, C. O'Rourke, Action spectra of P25 TiO2 and a visible light absorbing, carbon-modified titania in the photocatalytic degradation of stearic acid, Appl. Catal. B 150-151 (2014) 5) 338-344.

DOI: 10.1016/j.apcatb.2013.12.008

Google Scholar