Preparation and Charaterization of Poly(1,4–Butanediol-Citrate) Elastomers and CdTe/Poly(1,4–Butanediol-Citrate) Composite Bioelastomers

Article Preview

Abstract:

Poly (1, 4–butanediol-citrate) elastomer (PBC) network polyester bioelastomer and high fluorescent CdTe/PBC nanocomposite bioelastomer were obtained by melting polycondensation with citric acid and monomer 1, 4-Butylene glycol as monomers. The structures and properties of the products were characterized by FTIR,DSC and fluorescent spectra, etc. It shows that the glass transition temperature of the PBC and CdTe/PBC were all lower than 0°C. Both PBC and CdTe/PBC were amorphous, transparent and highly flexible. They also have good hydrophilicity, degradation, and stability in dimensions. The biodegradation and water uptake of elastomers PBC and CdTe/PBC could be modulated by adjusting the monomers ratio and post-polymerization time. CdTe/PBC has high fluorescence and is expected to be useful in soft tissue engineering with the function of fluorescence biomarker.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

482-488

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. F. Liu, J. S. Yu, In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility, J. Colloid Interface Sci. 351 (2010) 1-9.

DOI: 10.1016/j.jcis.2010.07.047

Google Scholar

[2] A. Nag, M.V. Kovalenko, J. -S. Lee, W. Liu, B. Spokoyny, D.V. Talapin, Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2–as Surface Ligands, J. Am. Chem. Soc. 133 (2011) 10612-10620.

DOI: 10.1021/ja2029415

Google Scholar

[3] A. M. Qin, X. Zhou, Y. Qiu, Y. Fang, C. Su, S. Yang, Periodically twinned nanotowers and nanodendrites of mercury selenide synthesized via a solution–liquid–solid route, Adv. Mater. 20 (2008) 768-773.

DOI: 10.1002/adma.200701127

Google Scholar

[4] A.M. Qin, Y. P. Fang, C.Y. Su, Hydrothermal synthesis of HgTe rod-shaped nanocrystals, Mater. Lett. 61 (2007) 126-129.

DOI: 10.1016/j.matlet.2006.04.020

Google Scholar

[5] N. Gaponik, D.V. Talapin, A.L. Rogach, K. Hoppe, E.V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes, J. Phys. Chem. B 106 (2002) 7177-7185.

DOI: 10.1021/jp025541k

Google Scholar

[6] D. M. Zhao, L. G. Sun, Y. J. Wang, Y. H. Du, C. Wang, Preparation and Application of CdTe Nanocrystals, Prog. Chem. 24 (2012) 1277-1293.

Google Scholar

[7] D.V. Talapin, S. Haubold, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, A novel organometallic synthesis of highly luminescent CdTe nanocrystals, J. Phys. Chem. B 105 (2001) 2260-2263.

DOI: 10.1021/jp003177o

Google Scholar

[8] S. Mahesh, A. Gopal, R. Thirumalai, A. Ajayaghosh, Light-induced Ostwald ripening of organic nanodots to rods, J. Am. Chem. Soc. 134 (2012) 7227-7230.

DOI: 10.1021/ja301002g

Google Scholar

[9] Z. Q. Liu, S.P. Liu, S. G. Yan, P. F. Yin, Y. Q. He, Interaction between GSH-CdTe QDs and L-Aspartic Acid and Its Analytical Application, Acta. Chim. Sinica 69 (2011) 2969-2974.

Google Scholar

[10] T. Ding, Y. Q. Xu, H. Gu, Y. R. Liang, X.M. Fang, L. Q. Zhang., Properties of poly (ethylene glycol)‐based bioelastomers, J. Appl. Polym. Sci. 118 (2010) 2442-2447.

Google Scholar

[11] H. Wen, C. Dong, H. Dong, A. Shen, W. Xia, X. Cai, Y. Song, X. Li, Y. Li, D. Shi, Engineered Redox‐Responsive PEG Detachment Mechanism in PEGylated Nano‐Graphene Oxide for Intracellular Drug Delivery, Small 8 (2012) 760-769.

DOI: 10.1002/smll.201101613

Google Scholar

[12] Q. Y. Liu, L. Jiang, R. Shi, L.Q. Zhang, Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—A review, Prog. Polym. Sci. 37 (2012) 715-765.

DOI: 10.1016/j.progpolymsci.2011.11.001

Google Scholar