Structural and Magnetic Properties of New Type CaxSr1-x-yLayO•nFe(2n-z)/nCoz/nO3 Magnets

Article Preview

Abstract:

Considering that Ca2+ has the similar ion radius and the substituted ability as Sr2+ and Ba2+ but the same family, CaxSr1-x-yLayO•nFe(2n-z)/nCoz/nO3 ferrites have been synthesized by the conventional ceramic process. Structure and magnetic properties of CaxSr1-x-yLayO•nFe(2n-z)/nCoz/nO3 compounds have systematically been investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscope (SEM) and B-H hysteresis curve measurements. Several compositions are selected to investigate the formation of M phase with the joint replacement of Ca-La-Co. It is found that the formation mechanism is based on the replacement of Sr2+ by La3+ plus Ca2+ and the charge compensation by Co2+. In futher results, the unexpectedly intrinsic coercivity of 436 kA/m and residual flux density of 0.445 T were obtained. In terms of material preparation, we believe that CaxSr1-x-yLayO•nFe(2n-z)/nCoz/nO3 is effective in the production of future high energy permanent magnets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kojima: Ferromagnetic Materials, vol. 3, 1st ed., (North-Holland, Amsterdam, 1982), p.305.

Google Scholar

[2] M. Sivakumar, A. Gedanken, W. Zhong, et al., J. Mag. Mag. Mater. 268, 95 (2004).

Google Scholar

[3] Y.P. Fu, C.H. Lin, K.Y. Pan, J. Alloys Compd. 349, 228(2003).

Google Scholar

[4] M.J. Iqbal, M.N. Ashiq, P.H. Gomez, J.M. Munoz, J. Mag. Mag. Mater. 320, 881(2008).

Google Scholar

[5] G. Asti, F. Bolzoni, J.M. Le Breton, et al., J. Magn. Magn. Mater. 272-276, E1845(2004).

Google Scholar

[6] J.F. Wang, C.B. Ponton, I.R. Harris, J. Magn. Magn. Mater. 242-245, 1464(2002).

Google Scholar

[7] X. Liu, P. Hernández-Gómez, K. Huang, et al., J. Magn. Magn. Mater. 305, 524(2006).

Google Scholar

[8] Z.F. Zi, Y.P. Sun, X.B. Zhu, et al., J. Magn. Magn. Mater. 320, 2746(2008).

Google Scholar

[9] L. Qiao, L.H. You, J.W. Zheng, L.Q. Jiang, J.W. Sheng, J. Magn. Magn. Mater. 318, 74(2007).

Google Scholar

[10] G.B. Teh, Y.C. Wong, R.D. Tilley, J. Magn. Magn. Mater. 323, 2318(2011).

Google Scholar

[11] G. Litsardakisa, I. Manolakisa, C. Serletisb, et al., J. Magn. Magn. Mater. 316 170(2007).

Google Scholar

[12] J.F. Wang, C.B. Ponton, I.R. Harris, J. Magn. Magn. Mater. 298, 122(2006).

Google Scholar

[13] H. Yamamoto, M. Isono, T. Kobayashi, J. Magn. Magn. Mater. 295, 51(2005).

Google Scholar

[14] G. Litsardakis, I. Manolakis, K. Efthimiadis, J. Alloy. Compd. 427, 194(2007).

Google Scholar

[15] B. Phlips, A. Muan, J. Am. Ceram. Soc. 41, 445(1958).

Google Scholar

[16] N. Ichinose, K. Kurihana, J. Phys. Soc. Jpn. 18, 1700(1963).

Google Scholar

[17] T.T. Fang, K.T. Lee, J. Am. Ceram. Soc. 72, 2304(1989).

Google Scholar

[18] X. Liu, P. Hernández-Gómez, Y. Deng, et al., J. Magn. Magn. Mater. 321, 2421(2009).

Google Scholar

[19] L. Lechevallier, J.M. Le Bretonb, J. Teillet, et al., Physica B 327, 135(2003).

Google Scholar

[20] G. Wiesinger, M. Muller, R. Grossinger, et al., Phys. Status Solidi (a) 189, 499(2002).

Google Scholar

[21] X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, Y. Du, J. Magn. Magn. Mater. 238, 207(2002).

Google Scholar

[22] Y. Tokunaga, N. Furukawa, H. Sakai, et al., Nature Mater. 8, 558(2009).

Google Scholar