[1]
M. L. Jiang and X. Z. Yan, Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects, http: /dx. doi. org/10. 5772/50702. Chapter 5. 2013: 107-143.
DOI: 10.5772/50702
Google Scholar
[2]
W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of pn Junction Solar Cells, J. Appl. Phys. 32 (3) (1961) 510-519.
DOI: 10.1063/1.1736034
Google Scholar
[3]
T. Gershon, B. Shin,N. Bojarczuk, et al., Photoluminescence characterization of a high-efficiency Cu2ZnSnS4 device, J. Appl. Phys. 114 (2013) 154905-1-154905-5.
DOI: 10.1063/1.4825317
Google Scholar
[4]
S. Thiruvenkadam, D. Jovina, A. L. Rajesh, The influence of deposition temperature in the photovoltaic properties of spray deposited CZTS thin film, Sol. Energy. 106 (2014) 166-170.
DOI: 10.1016/j.solener.2014.02.041
Google Scholar
[5]
B. Shin, O. Gunawan, Y. Zhu, et al., Thin film solar cell with 8. 4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Prog. Photovolt.: Res. Appl. 21 (2013) 72-76.
DOI: 10.1002/pip.1174
Google Scholar
[6]
M. A. Green, K. Emery, Y. Hishikawa, et al., Solar cell efficiency tables (version 43), Prog. Photovolt.: Res. Appl. 22 (2014)1-9.
DOI: 10.1002/pip.2452
Google Scholar
[7]
W. Wang, M. T. Winkler , D. B. Mitzi, et al., Device Characteristics of CZTSSe Thin-Film Cells with 12. 6% Efficiency, Adv. Energy Mater. 4 (7) (2013) 1-4.
DOI: 10.1002/aenm.201301465
Google Scholar
[8]
T. Maeda, S. Nakamura, T. Wada, Electronic structure and phase stability of In-free photovoltaic semiconductors, Cu2ZnSnSe4 and Cu2ZnSnS4 by first-principles calculation, Mater. Res. Symp. Proc. 1165 (2009) 1165-M04-03.
DOI: 10.1557/proc-1165-m04-03
Google Scholar
[9]
Z. Y. Zhao, C. S. Ma, Y.C. Cao, et al., Electronic structure and optical properties of wurtzite-kesterite Cu2ZnSnS4, Phys. Lett. A. 377 (2013) 417-422.
DOI: 10.1016/j.physleta.2012.11.057
Google Scholar
[10]
S. Y. Chen, A. Walsh, Y. Luo, et al., Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors, Phys. Rev. B. 82 (2010) 195203-1-195203-8.
DOI: 10.1103/physrevb.83.159904
Google Scholar
[11]
H. R. Liu, S.Y. Chen, Y. T. Zhai, et al., First-principles study on the effective masses of zinc-blend-derived Cu2Zn-IV-VI4 (IV=Sn, Ge, Si and VI=S, Se), J. Appl. Phys. 112 (2012) 093717-1-093717-6.
DOI: 10.1063/1.4759322
Google Scholar
[12]
S. Y. Chen, X. G. Gong, Frist-Principles Calculation Study of Multiternary Semiconductors and their a1loys, Department of Physies Fudan Universit Shanghai, China, (2009).
Google Scholar
[13]
X. C. He, H. L. Shen, First-principles study of elastic and thermo-physical properties of kesterite-type Cu2ZnSnS4, Physica B. 406 (2011) 4604-460.
DOI: 10.1016/j.physb.2011.09.035
Google Scholar
[14]
S. Bensalem, M. Chegaar, D. Maouche, et al., Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys, J. Alloys Compd. 589 (2014) 137-142.
DOI: 10.1016/j.jallcom.2013.11.113
Google Scholar
[15]
M.D. Segall, P.J.D. Lindan, M.J. Probert, et al., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Cond. Matt. 14 (11) (2002) 2717-2743.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[16]
J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[17]
C. Adamo, V. Barone, Toward Reliable Density Functionals Without Adjustable Parameters: the PBE0 Model, J. Chem. Phys. 110 (1999) 6158-6170.
DOI: 10.1063/1.478522
Google Scholar
[18]
H.J. Monkhorst and J.D. Pack, Special Points for Brillouin Zone Integrations, Phys. Rev. B. 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[19]
O. K. Andersen, O. Jepsen, Explicit, First-Principles Tight-Binding Theory, Phys. Rev. Lett. 53 (27) (1984) 2571-2574.
DOI: 10.1103/physrevlett.53.2571
Google Scholar
[20]
R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Lond. A 65 (1952) 349-354.
DOI: 10.1088/0370-1298/65/5/307
Google Scholar
[21]
W. Voigt, Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig, Berlin, (1928).
Google Scholar
[22]
A. Reuss, Z. Angew, Berechnung der Flie grenze von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle, ZAMM-J. Appl. Math. Mech. 9 (1929) 49-58.
DOI: 10.1002/zamm.19290090104
Google Scholar
[23]
P. P. Gunaicha, S. Gangama, J. L. Roehl, et al., Structural, energetic and elastic properties of Cu2ZnSn(SxSe1-x)4 (x = 1, 0. 75, 0. 5, 0. 25, 0) alloys from first-principles computations, Sol. Energy 102 (2014) 276-281.
DOI: 10.1016/j.solener.2014.01.015
Google Scholar
[24]
Z. W. Huang, Y. H. Zhao, H. Hou and P. D. Han, Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations, Physica B. 407 (2012) 1075-1081.
DOI: 10.1016/j.physb.2011.12.132
Google Scholar
[25]
S.F. Pugh, Concentration contours in grain boundary diffusion, Philos. Mag. 45 (1954)823-844.
Google Scholar