Theoretical Study of Structural, Elastic Properties and Phase Transitions of Cu2ZnSnS4

Article Preview

Abstract:

The total energy, the electronic properties, phase transitions, and elastic properties of Cu2ZnSnS4 (CZTS) in the three structures are investigated by first-principles calculations based on density functional theory. Results show that the total energies of stannite (ST) and primitive-mixed CuAu (PMCA) structures are higher than that of kesterite-type (KS), and the KS is the ground state structure. Relationships between enthalpy and pressure of the KS, ST and PMCA structure of CZTS are also investigated at 0 K, since the pressure can have profound impacts on the electronic structure, possible phase transitions and structure stability. And results also show that KS structure is always the most stable; ST is the second; and the PMCA structure is the most unstable; phase transitions of three structures could not occur in high pressure. The high ratios of shear modulus to bulk modulus (G/B) indicate that CZTS compounds in three types have ductile behaviors. The Poisson ratios for the three structures are from 0.27 to 0.31, which again proves that all structures of CZTS have better plasticity. The results can increase more hints about further research directions, and these effects can play an important role in future experimental preparation technology and theoretical work of CZTS materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. L. Jiang and X. Z. Yan, Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects, http: /dx. doi. org/10. 5772/50702. Chapter 5. 2013: 107-143.

DOI: 10.5772/50702

Google Scholar

[2] W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of pn Junction Solar Cells, J. Appl. Phys. 32 (3) (1961) 510-519.

DOI: 10.1063/1.1736034

Google Scholar

[3] T. Gershon, B. Shin,N. Bojarczuk, et al., Photoluminescence characterization of a high-efficiency Cu2ZnSnS4 device, J. Appl. Phys. 114 (2013) 154905-1-154905-5.

DOI: 10.1063/1.4825317

Google Scholar

[4] S. Thiruvenkadam, D. Jovina, A. L. Rajesh, The influence of deposition temperature in the photovoltaic properties of spray deposited CZTS thin film, Sol. Energy. 106 (2014) 166-170.

DOI: 10.1016/j.solener.2014.02.041

Google Scholar

[5] B. Shin, O. Gunawan, Y. Zhu, et al., Thin film solar cell with 8. 4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Prog. Photovolt.: Res. Appl. 21 (2013) 72-76.

DOI: 10.1002/pip.1174

Google Scholar

[6] M. A. Green, K. Emery, Y. Hishikawa, et al., Solar cell efficiency tables (version 43), Prog. Photovolt.: Res. Appl. 22 (2014)1-9.

DOI: 10.1002/pip.2452

Google Scholar

[7] W. Wang, M. T. Winkler , D. B. Mitzi, et al., Device Characteristics of CZTSSe Thin-Film Cells with 12. 6% Efficiency, Adv. Energy Mater. 4 (7) (2013) 1-4.

DOI: 10.1002/aenm.201301465

Google Scholar

[8] T. Maeda, S. Nakamura, T. Wada, Electronic structure and phase stability of In-free photovoltaic semiconductors, Cu2ZnSnSe4 and Cu2ZnSnS4 by first-principles calculation, Mater. Res. Symp. Proc. 1165 (2009) 1165-M04-03.

DOI: 10.1557/proc-1165-m04-03

Google Scholar

[9] Z. Y. Zhao, C. S. Ma, Y.C. Cao, et al., Electronic structure and optical properties of wurtzite-kesterite Cu2ZnSnS4, Phys. Lett. A. 377 (2013) 417-422.

DOI: 10.1016/j.physleta.2012.11.057

Google Scholar

[10] S. Y. Chen, A. Walsh, Y. Luo, et al., Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors, Phys. Rev. B. 82 (2010) 195203-1-195203-8.

DOI: 10.1103/physrevb.83.159904

Google Scholar

[11] H. R. Liu, S.Y. Chen, Y. T. Zhai, et al., First-principles study on the effective masses of zinc-blend-derived Cu2Zn-IV-VI4 (IV=Sn, Ge, Si and VI=S, Se), J. Appl. Phys. 112 (2012) 093717-1-093717-6.

DOI: 10.1063/1.4759322

Google Scholar

[12] S. Y. Chen, X. G. Gong, Frist-Principles Calculation Study of Multiternary Semiconductors and their a1loys, Department of Physies Fudan Universit Shanghai, China, (2009).

Google Scholar

[13] X. C. He, H. L. Shen, First-principles study of elastic and thermo-physical properties of kesterite-type Cu2ZnSnS4, Physica B. 406 (2011) 4604-460.

DOI: 10.1016/j.physb.2011.09.035

Google Scholar

[14] S. Bensalem, M. Chegaar, D. Maouche, et al., Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys, J. Alloys Compd. 589 (2014) 137-142.

DOI: 10.1016/j.jallcom.2013.11.113

Google Scholar

[15] M.D. Segall, P.J.D. Lindan, M.J. Probert, et al., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Cond. Matt. 14 (11) (2002) 2717-2743.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[16] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[17] C. Adamo, V. Barone, Toward Reliable Density Functionals Without Adjustable Parameters: the PBE0 Model, J. Chem. Phys. 110 (1999) 6158-6170.

DOI: 10.1063/1.478522

Google Scholar

[18] H.J. Monkhorst and J.D. Pack, Special Points for Brillouin Zone Integrations, Phys. Rev. B. 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[19] O. K. Andersen, O. Jepsen, Explicit, First-Principles Tight-Binding Theory, Phys. Rev. Lett. 53 (27) (1984) 2571-2574.

DOI: 10.1103/physrevlett.53.2571

Google Scholar

[20] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Lond. A 65 (1952) 349-354.

DOI: 10.1088/0370-1298/65/5/307

Google Scholar

[21] W. Voigt, Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig, Berlin, (1928).

Google Scholar

[22] A. Reuss, Z. Angew, Berechnung der Flie grenze von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle, ZAMM-J. Appl. Math. Mech. 9 (1929) 49-58.

DOI: 10.1002/zamm.19290090104

Google Scholar

[23] P. P. Gunaicha, S. Gangama, J. L. Roehl, et al., Structural, energetic and elastic properties of Cu2ZnSn(SxSe1-x)4 (x = 1, 0. 75, 0. 5, 0. 25, 0) alloys from first-principles computations, Sol. Energy 102 (2014) 276-281.

DOI: 10.1016/j.solener.2014.01.015

Google Scholar

[24] Z. W. Huang, Y. H. Zhao, H. Hou and P. D. Han, Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations, Physica B. 407 (2012) 1075-1081.

DOI: 10.1016/j.physb.2011.12.132

Google Scholar

[25] S.F. Pugh, Concentration contours in grain boundary diffusion, Philos. Mag. 45 (1954)823-844.

Google Scholar