XPS Study and First-Principles Calculations of the Structural and Electronic Properties of Type-VIII Clathrates Ba8Ga16-xCuxSn30

Article Preview

Abstract:

In the present work we report on the Single-crystal samples synthesis of type-VIII clathrates Ba8Ga16−xCuxSn30 (x = 0, 0.75, 1, 1.5, 2) by the Sn-flux method and the effects of Cu doping Ba8Ga16Sn30 have been investigated using x-ray photoemission spectroscopy (XPS). The structural and electronic properties have been studied by first-principles method based on the density-functional theory. We found that the Cu doping induced rearrangement of host-cage configuration, and consequently change of the electron transport properties. It was found that the binding energies for the Ba8Ga16−xCuxSn30 series decrease with increasing Cu substitution, resulting in a decrease of stability. Calculations indicate that these alloys are all indirect gap semiconductors and the band gap increases with increasing Cu content. Theoretical results indicate that Cu doping Ba8Ga16−xCuxSn30 should be p-type semiconductors, which does not agree with the previous experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-101

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Inforsearch Limited, London, (1957).

Google Scholar

[2] G. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe _CRC, Boca Raton, FL, (1995).

Google Scholar

[3] H. Kleinke, Chem. Mater. 22 (2010) 604.

Google Scholar

[4] N. L. Okamoto, K. Kishida, K. Tanaka, and H. Inui, J. Appl. Phys. 101 (2007) 113525.

Google Scholar

[5] I. Fujita, K. Kishimoto, M. Sato, H. Anno, and T. Koyanagi, J. Appl. Phys. 99, (2006) 093707.

Google Scholar

[6] A. Saramat, G. Svensson, A. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D. M. Rowe, J.D. Bryan, G.D. Stucky, J. Appl. Phys. 99 (2006) 023708.

DOI: 10.1063/1.2163979

Google Scholar

[7] K. Suekuni , S. Yamamoto, M. A. Avila, and T. Takabatake J. Phys. Soc. Jpn. 77, (2008) 61.

Google Scholar

[8] M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, Phys. Rev. B 74, (2006) 125109.

Google Scholar

[9] J. Martin and G. S. Nolas , H. Wang, J. Yang, J. Appl. Phys. 102 (2007) 103719.

Google Scholar

[10] A. F. May, E. S. Toberer, A. Saramat, G. J. Snyder, Phys. Rev. B 80 (2009) 125205.

Google Scholar

[11] X. F. Tang, P. Li, S. K Deng, Q.J. Zhang, J. Appl. Phys. 104 (2008) 013706.

Google Scholar

[12] M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Appl. Phys. Lett. 92 (2008) 041901.

DOI: 10.1063/1.2831926

Google Scholar

[13] S. K. Deng, D. C. Li, L. X. Shen, R. T. Hao, and T. Takabatake, Chin. Phys. B 21 (2012) 017401.

Google Scholar

[14] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 64 (1992) 1045.

Google Scholar

[15] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[16] A. A. Ogwua and T. H. Darma, J. Appl. Phys. 113 (2013) 183522.

Google Scholar

[17] D.C. Li, L. Fang, S. K. Deng, K. Y. Kang , L. X. Shen , W. H. Wei, H. B. Ruan, Physica B 407 (2012) 1238.

Google Scholar

[18] X. H. Zhu, N. Chen, L. H. Liu, Y. Li, J. Appl. Phys. 111(2012) 07E305.

Google Scholar

[19] P. Ravindran, R.A. sokamani Bull. Mater. Sci. 20 (1997) 4.

Google Scholar