Impacts of Cr Substitution on Ion Distributions and Electrochemical Performance of LiNi0.5-xCr2xMn1.5-xO4 Cathode Materials

Article Preview

Abstract:

A spinel-structured LiNi0.5-xCr2xMn1.5-xO4(x=0, 0.05) were prepared via co-precipitation routes. The experiment results from XRD, SEM and electrochemical analyses show that the substitutions of Ni and Cr for Mn in LiMn2O4can not prevent Mn2+from being oxidized into Mn3+ in solution process, however,Mn2+ oxidation does not change their final crystal structures of spinel phase, but do influence the Li/Ni2+ cation mixing and Mn3+occurrence in lattice. After substitution the first charge and discharge capacities decrease but its cycleability is improved significantly, especially for the Ni and Cr co-substitution

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-311

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Goodenough J. B, Kim. Y, Chem. Materi., 2010, 22: 587-603.

Google Scholar

[2] M.M. Mackery, Prog. Solids. Chem., 1997, 25: l-71.

Google Scholar

[3] X.Q. Wang, H. Nakamura, M. Yoshio, J. Power Sources, 2002, 110: 19–26.

Google Scholar

[4] J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel, J. Power Sources, 2002, 112: 222–230.

Google Scholar

[5] Lee.J. H., Hong.J. K., Jang.D. H., Y. -K. Sun, Seung M. Oh, J. Power Sources 2000, 89: 7–14.

Google Scholar

[6] K-S. Lee, S-T. Myung, H-J. Bang, et al. , Electrochimica Acta, 2005, 2: 5201–5206.

Google Scholar

[7] X.P. Qiu, X.G. Sun, W.C. Shen, N.P. Chen, Solid State lonics, 1997, 93: 335-339.

Google Scholar

[8] A. de Kock, E. Ferg , R.J. Gummow, J. Power Sources, 1998, 70: 247-252.

Google Scholar

[9] G.G. Amatucci, N. Pereira, T. Zheng, et la., J. Power Sources, 1999, 81–82: 39–43.

Google Scholar

[10] A. Manthiram, J. Phys. Chem. Lett., 2011, 2: 176–184.

Google Scholar

[11] D-J. Lee, K-S. Lee., S-T. Myung, H. Yashiro, Y-K. Sun, J. Power Sources, 2011, 196: 1353–1357.

Google Scholar

[12] Z-S. Zheng, Z.L. Tang, Z.T. Zhang, W.C. Shen, Y.H. Lin, Solid State Ionics, 2002, 148: 317 – 321.

Google Scholar

[13] J. Cabana, M. Casas-Cabanas, et. al., Chem. Mater., 2012, 24 : 2952−2964.

Google Scholar

[14] T. Yoon, S. Park, J. Mun, J-H Ryu, W. Choi, Y-S Kang, et. al., J. Power Sources, 2012, 215: 312–316.

Google Scholar

[15] S. B. Park, W. S. Eom, H. Jang,et al., J. Power Sources, 2006, 159: 679–684.

Google Scholar

[16] Y-K. Sun, S-W. Oh, C-S. Yoon., et al. J. Power Sources, 2006, 161(1): 19~26.

Google Scholar

[17] T.A. Arunkumar, A. Manthiram, Electrochimica Acta , 2005, 50: 5568–5572.

Google Scholar