Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Cathode in Lithium-Ion Cells

Article Preview

Abstract:

LiNi0.8Co0.15Al0.05O2, as the cathode materials for lithium ion battery, were prepared from the precursors, Ni0.8Co0.15Al0.05(OH)2 which were synthesized by chemical co-precipitation method. LiNi0.8Co0.15Al0.05O2 particles are modified with AlF3 and AlPO4. Even though the initial discharge capacity of the coated LiNi0.8Co0.15Al0.05O2 was decreased that of the pristine material, the capacity retention and the thermal stability, in a highly oxidized state are both significantly improved. This effect is attributed to the thin coating layer protecting the oxidized cathode particles from being attacked by hydrogen fluoride in the electrolyte. The cycling behavior of the AlF3-coated LiNi0.8Co0.15Al0.05O2 is quite stable showing good capacity retention (96.3% of its initial capacity after 30 cycles).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-320

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc. 140 (1993) 1862.

Google Scholar

[2] J.R. Dahn, E.W. Fuller, M. Obrovac, U. von Sacken, Solid State Ionics 69(1994) 265.

Google Scholar

[3] H. Arai, M. Tsuda, K. Saito, M. Hayashi, Y. Sakurai, J. Electrochem. Soc. 146 (2002) A401.

Google Scholar

[4] A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, C. Delmas, Solid State Ionics 90 (1996) 83.

Google Scholar

[5] J. Cho, G. Kim, and H. S. Lim, J. Electrochem. Soc., 146, 3571 (1999).

Google Scholar

[6] Z. Zhang, D. Fouchard, and J. R. Rea, J. Power Sources, 70, 16 (1998).

Google Scholar

[7] A. Ueda and T. Ohzuku, J. Electrochem. Soc., 141, 2010 (1994).

Google Scholar

[8] W. Li, J. N. Reimers, and J. R. Dahn, Solid State Ionics, 67, 123 (1993).

Google Scholar

[9] J. Cho, T. J. Kim, Y. Kim, and B. Park, Electrochem. Solid-State Lett., 4, A159 (2001).

Google Scholar

[10] W. Li and J. C. Currie, J. Electrochem. Soc., 144, 2773 (1997).

Google Scholar

[11] S.C. Park, Y.M. Kim, S.C. Han, S. Ahn, C.H. Ku, J.Y. Lee, J. Power Sources 107 (2002) 42.

Google Scholar

[12] Y. Kim, J. Cho, J. Electrochem. Soc. 154 (2007) A495.

Google Scholar

[13] Y.K. Sun, S.T. Myung, M.H. Kim, J. Prakash, K. Amine, J. Am. Chem. Soc. 127 (2005)13411.

Google Scholar

[14] Y.K. Sun, S.T. Myung, H.S. Shin, Y.C. Bae, C.S. Yoon, J. Phys. Chem. B 110 (2006) 6810.

Google Scholar

[15] K.S. Lee, S.T. Myung, Y.K. Sun, J. Power Sources 195 (2010) 6043.

Google Scholar