Theoretical Investigation of Carbon Atom Adsorption and Diffusion on the Surfaces of Cu

Article Preview

Abstract:

The adsorption and diffusion of carbon atom on Cu (111) and (100) surfaces have been investigated based on first-principles density-functional theory. For Cu (111) surface, the hexagonal close-packed and face-centered cubic sites are the most stable sites with little energy difference in the adsorption energy. For Cu (100) surface, the hollow site is the most stable. There is charge transfer from Cu surface to the adsorbed carbon atom. Moreover, the diffusions of carbon atom on Cu surfaces have been investigated, and the results show that the diffusion of carbon atom prefers to happen on Cu (111) surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

475-479

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon 48 (2010) 2127-2150.

DOI: 10.1016/j.carbon.2010.01.058

Google Scholar

[2] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.

DOI: 10.1038/nature07719

Google Scholar

[3] J. Coraux, A.T. N'Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir (111), Nano Lett. 8 (2008) 565-570.

DOI: 10.1021/nl0728874

Google Scholar

[4] P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium, Nat. Mater. 7 (2008) 406-411.

DOI: 10.1038/nmat2166

Google Scholar

[5] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B.S. Hu, C.M. Orofeo, M. Tsuji, K. Ikeda, S. Mizuno, Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire, ACS Nano 4 (2010) 7407-7414.

DOI: 10.1021/nn102519b

Google Scholar

[6] X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (2009) 1312-1314.

DOI: 10.1126/science.1171245

Google Scholar

[7] S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010).

DOI: 10.1038/nnano.2010.132

Google Scholar

[8] B.H. Li, Q.J. Zhang, L. Chen, P. Cui, X.Q. Pan, Vacancy-mediated diffusion of carbon in cobalt and its influence on CO activation, Phys. Chem. Chem. Phys. 12 (2010) 7848-7855.

DOI: 10.1039/b925764k

Google Scholar

[9] D.E. Jiang, E.A. Carter, Carbon atom adsorption on and diffusion into Fe (110) and Fe (100) from first principles, Phys. Rev. B 71 (2005) 045402.

DOI: 10.1103/physrevb.71.045402

Google Scholar

[10] Y.A. Zhu, Y.C. Dai, D. Chen, W.K. Yuan, First-principles study of C chemisorption and diffusion on the surface and in the subsurface of Ni (111) during the growth of carbon nanofibers, Surf. Sci. 601 (2007) 1319-1325.

DOI: 10.1016/j.susc.2006.12.063

Google Scholar

[11] Y.A. Zhu, X.G. Zhou, D. Chen, W.K. Yuan, First-principles study of C adsorption and diffusion on the surfaces and in the subsurfaces of nonreconstructed and reconstructed Ni (100), J. Phys. Chem. C 111 (2007) 3447-3453.

DOI: 10.1021/jp066373p

Google Scholar

[12] L.C. Jia, X. Wang, B. Hua, W.L. Li, B. Chi, J. Pu, S.L. Yuan, L. Jian, Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces, Int. J. Hydrogen Energy 37 (2012) 11941-11945.

DOI: 10.1016/j.ijhydene.2012.05.041

Google Scholar

[13] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[14] D. Vanderbilt, Soft self-consistent pseudopotentials in generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[15] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[16] N. Govind, M. Petersen, G. Fitzgerald, D.K. Smith, J. Andzelm, A generalized synchronous transit method for transition state location, Comput. Mater. Sci. 28 (2003) 250-258.

DOI: 10.1016/s0927-0256(03)00111-3

Google Scholar