[1]
C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon 48 (2010) 2127-2150.
DOI: 10.1016/j.carbon.2010.01.058
Google Scholar
[2]
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.
DOI: 10.1038/nature07719
Google Scholar
[3]
J. Coraux, A.T. N'Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir (111), Nano Lett. 8 (2008) 565-570.
DOI: 10.1021/nl0728874
Google Scholar
[4]
P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium, Nat. Mater. 7 (2008) 406-411.
DOI: 10.1038/nmat2166
Google Scholar
[5]
H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B.S. Hu, C.M. Orofeo, M. Tsuji, K. Ikeda, S. Mizuno, Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire, ACS Nano 4 (2010) 7407-7414.
DOI: 10.1021/nn102519b
Google Scholar
[6]
X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (2009) 1312-1314.
DOI: 10.1126/science.1171245
Google Scholar
[7]
S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010).
DOI: 10.1038/nnano.2010.132
Google Scholar
[8]
B.H. Li, Q.J. Zhang, L. Chen, P. Cui, X.Q. Pan, Vacancy-mediated diffusion of carbon in cobalt and its influence on CO activation, Phys. Chem. Chem. Phys. 12 (2010) 7848-7855.
DOI: 10.1039/b925764k
Google Scholar
[9]
D.E. Jiang, E.A. Carter, Carbon atom adsorption on and diffusion into Fe (110) and Fe (100) from first principles, Phys. Rev. B 71 (2005) 045402.
DOI: 10.1103/physrevb.71.045402
Google Scholar
[10]
Y.A. Zhu, Y.C. Dai, D. Chen, W.K. Yuan, First-principles study of C chemisorption and diffusion on the surface and in the subsurface of Ni (111) during the growth of carbon nanofibers, Surf. Sci. 601 (2007) 1319-1325.
DOI: 10.1016/j.susc.2006.12.063
Google Scholar
[11]
Y.A. Zhu, X.G. Zhou, D. Chen, W.K. Yuan, First-principles study of C adsorption and diffusion on the surfaces and in the subsurfaces of nonreconstructed and reconstructed Ni (100), J. Phys. Chem. C 111 (2007) 3447-3453.
DOI: 10.1021/jp066373p
Google Scholar
[12]
L.C. Jia, X. Wang, B. Hua, W.L. Li, B. Chi, J. Pu, S.L. Yuan, L. Jian, Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces, Int. J. Hydrogen Energy 37 (2012) 11941-11945.
DOI: 10.1016/j.ijhydene.2012.05.041
Google Scholar
[13]
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (2002) 2717-2744.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[14]
D. Vanderbilt, Soft self-consistent pseudopotentials in generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[15]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[16]
N. Govind, M. Petersen, G. Fitzgerald, D.K. Smith, J. Andzelm, A generalized synchronous transit method for transition state location, Comput. Mater. Sci. 28 (2003) 250-258.
DOI: 10.1016/s0927-0256(03)00111-3
Google Scholar