Theoretical Investigation of Carbon Atom Adsorption and Diffusion on the Surfaces of Cu

Abstract:

Article Preview

The adsorption and diffusion of carbon atom on Cu (111) and (100) surfaces have been investigated based on first-principles density-functional theory. For Cu (111) surface, the hexagonal close-packed and face-centered cubic sites are the most stable sites with little energy difference in the adsorption energy. For Cu (100) surface, the hollow site is the most stable. There is charge transfer from Cu surface to the adsorbed carbon atom. Moreover, the diffusions of carbon atom on Cu surfaces have been investigated, and the results show that the diffusion of carbon atom prefers to happen on Cu (111) surface.

Info:

Periodical:

Edited by:

Katsuyuki Kida

Pages:

475-479

Citation:

L. Qiao et al., "Theoretical Investigation of Carbon Atom Adsorption and Diffusion on the Surfaces of Cu", Advanced Materials Research, Vol. 1082, pp. 475-479, 2015

Online since:

December 2014

Export:

Price:

$41.00

* - Corresponding Author

[1] C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon 48 (2010) 2127-2150.

[2] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.

DOI: https://doi.org/10.1038/nature07719

[3] J. Coraux, A.T. N'Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir (111), Nano Lett. 8 (2008) 565-570.

DOI: https://doi.org/10.1021/nl0728874

[4] P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium, Nat. Mater. 7 (2008) 406-411.

DOI: https://doi.org/10.1038/nmat2166

[5] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B.S. Hu, C.M. Orofeo, M. Tsuji, K. Ikeda, S. Mizuno, Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire, ACS Nano 4 (2010) 7407-7414.

DOI: https://doi.org/10.1021/nn102519b

[6] X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (2009) 1312-1314.

DOI: https://doi.org/10.1126/science.1171245

[7] S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010).

DOI: https://doi.org/10.1038/nnano.2010.132

[8] B.H. Li, Q.J. Zhang, L. Chen, P. Cui, X.Q. Pan, Vacancy-mediated diffusion of carbon in cobalt and its influence on CO activation, Phys. Chem. Chem. Phys. 12 (2010) 7848-7855.

DOI: https://doi.org/10.1039/b925764k

[9] D.E. Jiang, E.A. Carter, Carbon atom adsorption on and diffusion into Fe (110) and Fe (100) from first principles, Phys. Rev. B 71 (2005) 045402.

DOI: https://doi.org/10.1103/physrevb.71.045402

[10] Y.A. Zhu, Y.C. Dai, D. Chen, W.K. Yuan, First-principles study of C chemisorption and diffusion on the surface and in the subsurface of Ni (111) during the growth of carbon nanofibers, Surf. Sci. 601 (2007) 1319-1325.

DOI: https://doi.org/10.1016/j.susc.2006.12.063

[11] Y.A. Zhu, X.G. Zhou, D. Chen, W.K. Yuan, First-principles study of C adsorption and diffusion on the surfaces and in the subsurfaces of nonreconstructed and reconstructed Ni (100), J. Phys. Chem. C 111 (2007) 3447-3453.

DOI: https://doi.org/10.1021/jp066373p

[12] L.C. Jia, X. Wang, B. Hua, W.L. Li, B. Chi, J. Pu, S.L. Yuan, L. Jian, Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces, Int. J. Hydrogen Energy 37 (2012) 11941-11945.

DOI: https://doi.org/10.1016/j.ijhydene.2012.05.041

[13] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (2002) 2717-2744.

DOI: https://doi.org/10.1088/0953-8984/14/11/301

[14] D. Vanderbilt, Soft self-consistent pseudopotentials in generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: https://doi.org/10.1103/physrevb.41.7892

[15] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: https://doi.org/10.1103/physrevlett.77.3865

[16] N. Govind, M. Petersen, G. Fitzgerald, D.K. Smith, J. Andzelm, A generalized synchronous transit method for transition state location, Comput. Mater. Sci. 28 (2003) 250-258.

DOI: https://doi.org/10.1016/s0927-0256(03)00111-3