Out-of-Plane Thermal Conductivity of Silicon Thin Film Doped with Germanium

Article Preview

Abstract:

The out-of-plane thermal conductivity of silicon thin film doped with germanium is calculated by non-equilibrium molecular dynamics simulation using the Stillinger-Weber potential model. The silicon thin film is doped with germanium atoms in a random doping pattern with a doping density of 5% and 50% respectively. The effect of silicon thin film thickness on its thermal conductivity is investigated. The simulated thicknesses of silicon thin film doped with germanium range from 2.2 to 10.9 nm at an average temperature 300K. The simulation results indicate that the out-of-plane thermal conductivity of the silicon thin film doped with germanium decreases linearly with the decreasing film thickness. As for the film thickness of 9.8nm and the average temperature ranging from 250 to 1000 K, the investigation shows that the temperature dependence of the film thermal conductivity is not sensitive.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

459-462

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.J. Liu and M. Asheghi, Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperature, J. Appl. Phys. 98 (2005) 123523.

DOI: 10.1063/1.2149497

Google Scholar

[2] A.I. Fedorchenko, A.B. Wang, and H.H. Cheng, Thickness dependence of nanofilm elastic modulus, Appl. Phys. Lett. 94 (2009) 152111.

DOI: 10.1063/1.3120763

Google Scholar

[3] A. Mittal and S. Mazumder, Monte carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons, J. Heat Transfer 132 (2010) 052402.

DOI: 10.1115/1.4000447

Google Scholar

[4] Y.S. Ju, and K.E. Goodson, Phonon scattering in silicon thin films with thickness of order 100 nm, Appl. Phys. Lett. 74 (1999) 3005–3007.

DOI: 10.1063/1.123994

Google Scholar

[5] W.J. Liu and M. Asheghi, Phonon-boundary scattering in ultrathin single-crystal silicon layers, Appl. Phys. Lett. 84 (2004) 3819-3821.

DOI: 10.1063/1.1741039

Google Scholar

[6] Z.H. Wang and Z.X. Li, Lattice dynamics analysis of thermal conductivity in silicon nanoscale film, Appl. Therm. Eng. 26 (2006) 2063-(2066).

DOI: 10.1016/j.applthermaleng.2006.04.020

Google Scholar

[7] W.J. Liu and M. Asheghi, Thermal conductivity of measurements of ultra-thin single crystal silicon layers, J. Heat Transfer 128 (2006) 75.

DOI: 10.1115/1.2130403

Google Scholar

[8] A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, et al., Silicon nanowires as efficient thermoelectric materials, Nature 451 (2008) 168-171.

DOI: 10.1038/nature06458

Google Scholar

[9] J.R. Lukes, D. Y. Li, X. G. Liang, and C. L. Tien, Molecular dynamics study of solid thin-film thermal conductivity, J. Heat Transfer 122 (2000) 536-543.

DOI: 10.1115/1.1288405

Google Scholar

[10] J.E. Turney, A.J. H. McGaughey, and C.H. Amon, In-plane phonon transport in thin films, J. Appl. Phys. 107 (2010) 024317.

DOI: 10.1063/1.3296394

Google Scholar

[11] C.J. Gomes, M. Madrid, J.V. Goicochea, and C.H. Amon, In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics, J. Heat Transfer 128 (2006) 1114-1121.

DOI: 10.1115/1.2352781

Google Scholar

[12] F.H. Stillinger, and T.A. Weber, Computer simulation of local order in condensed phases of silicon, Physical Review B 31 (1985) 5262.

DOI: 10.1103/physrevb.31.5262

Google Scholar

[13] A. Majumdar, Microscale heat conduction in dielectric thin films, J. Heat Transfer 115 (1993) 7–16.

DOI: 10.1115/1.2910673

Google Scholar