[1]
V.D. Zavadovskaya, A.P. Kurazhov, O. Yu. Kilina, M.A. Zorkal'tsev, E.L. Choinzonov, V.I. Chernov, E.M. Slonimskaya, A.V. Bogoutdinova, I.I. Anisenya, F.F. Titskaya, R.V. Zelchan, 199tl-chloride scintigraphy: different types of visualization of musculoskeletal malignant tumors, Diagnostic and Interventional Radiology 7(1) (2013).
DOI: 10.20538/1682-0363-2012-3-120-131
Google Scholar
[2]
B.R. Mittal, R.K. Singh, S. Kumari, K. Manohar, A. Bhattacharya, G. Singh, Role of Tc99m-Sestamibi scintimammography in assessing response to neoadjuvant chemotherapy in patients with locally advanced breast cancer Indian J. Nucl. Med. 27(4) (2012).
DOI: 10.4103/0972-3919.115391
Google Scholar
[3]
K.R. Zasadny, M. Tatsumi, R.L. Wahl, FDG metabolism and uptake versus blood flow in women with untreated primary breast cancer, Eur. J. Nuc. Med. And Molecular Imaging. 30(2) (2003) 274-279.
DOI: 10.1007/s00259-002-1022-z
Google Scholar
[4]
V.I. Chernov, R.V. Zel'chan, A.A. Titskaya, I.G. Sinilkin, Gamma scintigraphy with 99m Tc-MIBI in the complex diagnostics and assessment of neoadjuvant chemotherapy efficacy in laryngeal and laryngopharyngeal cancer, Medical Radiology and Radiation Safety 56(2) (2011).
Google Scholar
[5]
M. Agrawal, J. Abraham, F.M. Balis, M. Edgerly, W.D. Stein, Increased 99mTc-sestamibi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576, Clin. Cancer. Res. 9(2) (2003) 650-656.
Google Scholar
[6]
C.M. Gomes, M.F. Botelho, A. Abrunhosa, Uptake and efflux kinetics of Tc-99m MIBI and Tc-99m tetrafosmin in a Pgp-expressing tumour cell line, Eur. J. Nuc. Med. 31(2) (2003) 275.
Google Scholar
[7]
L. Kabasakal, M. Halaĉ, C. Nisli, O. Oguz, C. Onsel, et al. The effect of P-glycoprotein function inhibition with cyclosporine A on the biodistribution of Tc-99m sestamibi, J. Clin. Nucl. Med. 25(1) (2000) 20-23.
DOI: 10.1097/00003072-200001000-00005
Google Scholar
[8]
R. Danielsson, A. Sanchez-Crespo, A. Pegerfalk, 99mTc-sestamibi uptake and histological malignancy grade in invasise breast carcinoma. Eur. Jur. Nuc. Med. 30(5) (2003) 662-666.
DOI: 10.1007/s00259-003-1132-2
Google Scholar
[9]
L. Mansi, P.F. Rambaldi, E. Procaccini, Scintimammography with Technetium-99m tetrafosmin in the diagnosis of breast cancer and lymph node metastasis. Eur. J. Nuc. Med. 23 (1996) 932-939.
DOI: 10.1007/bf01084367
Google Scholar
[10]
S.V. Kanaev, S.N. Novikov, P.V. Krivorot'ko, V.F. Semiglazov, P.I. Kryzhevitskii, Interpretation of breast imaging with 99mTc-MIBI by semiquantitative lesion characterization, Problems in Oncology 58(6) (2012) 768-772 (Russian).
Google Scholar
[11]
S.J. Kim, Y.T. Bae, J.S. Lee, I.J. Kim, Y.K. Kim, Diagnostic performances of double-phase tc-99m MIBI scintimammography in patients with indeterminate ultrasound findings: visual and quantitative analyses, J. Ann. Nucl. Med. 21(3) (2007) 145-150.
DOI: 10.1007/s12149-006-0002-y
Google Scholar
[12]
W. Yu. Ussov, J.E. Riannel, J.M. Michailovic, Quantification of breast cancer blood flow in absolute units using Rutland-Patlak analysis of 99mTc MIBI uptake, Reviews in Nucl. Med. Countries of Central and east Europe 2(2) (1999) 36-44.
Google Scholar
[11]
F. Scopinaro, O. Schillaci, M. Scarpini, Technetium-99m sestamibi: an indicator of breast cancer invasiveness, Eur. J. Nuc. Med. 21(9) (1994) 984-987.
DOI: 10.1007/bf00238124
Google Scholar
[12]
A. Spanu, O. Schillaci, G.B. Meloni, The usefulness of 99mTc-tetrofosmin SPECT scintimammography in the detection of small size primary breast carcinomas, In. t J. Oncol. 21(4) (2002) 831-40.
DOI: 10.3892/ijo.21.4.831
Google Scholar