Potential for Therapeutic Gain - 29 MeV Neutrons versus 6 MeV Neutrons

Article Preview

Abstract:

When a cancer type proves to be radioresistant to treatment with X-rays, the use of neutrons may constitute therapeutic gain provided the cells are relatively sensitive to high-LET radiation. In this work studies with different tumor cell types are reported following exposure to either photons or different neutron energies used in clinical radiation therapy. Potential for therapeutic gain is clearly noted for neutrons with a mean energy of 6 MeV whilst that for 29 MeV neutrons is dependent on the cell types used in the study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

559-566

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Wambersie, G.W. Barendsen, N. Breteau, Overview and prospects of the application of fast neutrons in cancer therapy, J Eur Radiother 5 (1984) 248-264.

Google Scholar

[2] J.J. Battermann, K. Breur, G.A. M Hart, Observations on pulmonary metastases in patients after single doses and multiple fractions of fast neutrons and cobalt-60 gamma rays, Eur J Cancer. 17 (1981) 539-548.

DOI: 10.1016/0014-2964(81)90056-6

Google Scholar

[3] G. Schmitt, A. Wambersie, Review of the clinical results of fast neutron therapy, Radiother Onkol 17 (1990) 47-57.

Google Scholar

[4] E.J. Hall, Radiobiological intercomparisons in vivo and in vitro, Int J Radiat Oncol Biol Phys. 3 (1977) 195-201.

Google Scholar

[5] G.E. Laramore, J.T. Griffith, M. Boespflug, Fast neutron radiotherapy for sarcomas of soft tissue, bone and cartilage, Am J Clin Oncol. 12 (1989) 320 –326.

DOI: 10.1097/00000421-198908000-00009

Google Scholar

[6] C. Stannard, F. Vernimmen, D. Jones, Neutron Therapy Program at the National Accelerator Centre, South Africa: Preliminary results, Radiat Oncol Invest. 2 (1995) 225-245.

Google Scholar

[7] D. Van Beuningen, C. Streffer, H. Dellmann, Dünndarmschüden und Überleben von Mausen nach fraktionierten und einmaliger Röntgen –und Neutronenbestrahlung, Strahlenther Onkol. 157 (1981) 753-758.

Google Scholar

[8] D. Van Beuningen, C. Streffer, G. Berthold, Mikronukleusbildung im Vergleich zür Überlebensrate von Menschlichen Melanoomzellen nach Röntgen -Neutronenbestrahlung und Hyperthermie, Strahlenther Onkol. 157 (1981) 600-606.

Google Scholar

[9] B.J. Mijnheer, P. Wootton, J. R Williams, Uniformity in dosimetry protocols for therapeutic applications of fast neutron beams, Med Phys. 14 (1987) 1020-1026.

DOI: 10.1118/1.595980

Google Scholar

[10] W. Sauerwein, W. Ziegler, K. Olthoff, et al. Neutron capture therapy using a fast neutron beam: Clinical considerations and physical aspects, Strahlenther Onkol. 165 (1989) 208–210.

Google Scholar

[11] L. Van Wijk, C. Stannard, C.V. Levine, et al. Neutron irradiation of uterine sarcomas, Radiat Oncol Invest. 4 (1996) 275–280.

DOI: 10.1002/(sici)1520-6823(1996)4:6<275::aid-roi5>3.0.co;2-v

Google Scholar

[12] D.H. Hussey, R. Meyn, J.B. Smathers, Neutron therapy. In: Bleehen NM, Galstein E, Haybittle JL, editors. Radiation therapy planning, New York: Marcel Dekker (1983) pp.393-437.

Google Scholar

[13] G.E. Laramore, J.M. Krall, T.W. Griffin, et al. Neutron versus photon irradiation for irresectable salivary gland tumours: Final report of an RTOG-MRC randomized clinical trial, Int J Radiat Oncol Biol Phys. 27 (1993) 235-240.

DOI: 10.1016/0360-3016(93)90233-l

Google Scholar

[14] G.W. Barendsen, J.J. Broerse, Differences in radiosensitivity of cells of various types of experimental tumors in relation to the RBE of 15 MeV neutrons, lnt. J. Radiat. Oncol. Biol. Phys. 3 (1977) 211-214.

DOI: 10.1016/0360-3016(77)90251-6

Google Scholar

[15] J.D. Chapman, Biophysical models of mammalian cell inactivation by radiation. In: Meyn R.H. Withers H. R. (eds. ): Radiation biology in cancer research, Raven Press. New York (1988) 21-31.

Google Scholar

[16] P.J. Binns, J.H. Hough JH. Lineal energy measurements in two fast neutron beams: d(16)/Be and p(66)/Be, Radiat Prot Dosim. 23 (1988) 385–388.

DOI: 10.1093/rpd/23.1-4.385

Google Scholar

[17] B. Fertil, P.J. Deschavanne, J. Gueuletle, A. Possoz, A. Wambersie, E.P. Malaise, In vitro radiation of six human cell lines. II. Relation to RBE of 50 MeV neutrons, Radiat. Res. 1982, 90 526-537.

DOI: 10.2307/3575730

Google Scholar

[18] R.A. Britten, H. M Warenius, C. Parkins, J.H. Peacock, The inherent cellular sensitivity to p(62. 5)/Be neutrons of human cells differing in photon sensitivity, Int J Radiat. Oncol. Biol. Phys. 61 (1992) 805–812.

DOI: 10.1080/09553009214551681

Google Scholar

[19] H. M Warenius, R.A. Britten, P.G. Browning, I.E. Morton, J.H. Peacock, Identification of human in vitro cell lines with greater intrinsic cellular radiosensitivity tp 62. 5 MeV (p/Be) neutrons than 4 MeV photons, Int. J. Radiation. Oncol. Biol. Phys. 28 (1994).

DOI: 10.1016/0360-3016(94)90112-0

Google Scholar

[20] J.P. Slabbert, T. Theron, F. Zölzer, C. Streffer, L. Böhm, A comparison of the potential therapeutic gain p(66)/Be neutrons and d(14)/Be neutrons, Int. J. Radiation Oncology Biol. Phys. 47 (2000) 1059-1065.

DOI: 10.1016/s0360-3016(00)00508-3

Google Scholar

[21] A.M. Kellerer, O. Hug, A theory of dose-effect relations, Encyclop. Med. Radiol. III (1972) 1-42.

Google Scholar

[22] B. Fertil, H. Dertinger, A. Courdi, E.P. Malais, Mean inactivation dose: a useful concept for intercomparison of human cell survival curves, Radiation Res. 99 (1984) 73-84.

DOI: 10.2307/3576448

Google Scholar

[23] J.P. Slabbert, T. Theron, A. Serafin, D.T.L. Jones, L. Böhm, G. Schmitt, Radiosensitivity variations in human tumour cell lines exposed in vitro to p(66)/Be neutrons or 60Co-γ-rays, Strahlenther und Onkol. 172 (1996) 567–572.

Google Scholar

[24] E.R. Hering, An investigation of changes in relative biological effectiveness (RBE) with depth for X-ray beams generated between 100 and 250 kVp using the mouse foot as the biological test system. Int J Radiat Oncol Biol Phys. 12 (1986) 815–821.

DOI: 10.1016/0360-3016(86)90041-6

Google Scholar

[25] M.R. Raju, Heavy particle radiotherapy. New York: Academic Press. (1980) p.39–72.

Google Scholar

[26] M. Tubiana, J. Dutreix, A. Wambersie, Introduction to radiobiology. London: Taylor & Francis; (1990) p.273–301.

Google Scholar

[27] C. Stannard, F. Vernimmen, H. Carrara, D. Jones, S. Fredericks, J. Hille, E. de Kock, Malignant salivary gland tumours: can fast neutron therapy results point the way to carbon ion therapy?, Radiother Oncol. 109 (2013) 262-268.

DOI: 10.1016/j.radonc.2013.08.013

Google Scholar

[28] J.P. Slabbert, L. August, A. Vral, J. Symons, The relative biological effectiveness of a high energy neutron beam for micronuclei induction in T-lymphocytes of different individuals, Radiation Measurements. 45 (2010) 1455-1457.

DOI: 10.1016/j.radmeas.2010.06.060

Google Scholar

[29] T. Theron, J.P. Slabbert, A. Serafin, L. Böhm, The merits of cell kinetic parameters for the assessment of intrinsic cellular radiosensitivity to photon and high linear energy transfer neutron irradiation, Int J Radiat Oncol Biol Phys. 37 (1997).

DOI: 10.1016/s0360-3016(96)00533-0

Google Scholar

[30] J.P. Slabbert, J.H. Langenhoven, B.S. Smit, Synthesis of [123I] iodoantipyrine to study the high-LET characteristics of Auger electrons in mammalian cells, Journal of Radioanalytical and Nuclear Chemistry. 240 (1999) 505-508.

DOI: 10.1007/bf02349403

Google Scholar

[31] L. Böhm, G. Blekkenhorst, J.P. Slabbert, RBE and OER measurements on the p(66)/Be neutron beam at Faure, South Africa, Strahlenther Onkol. 168 (1992) 42-47.

Google Scholar

[32] V. Vandersickel, P. Beukes, B. Van Bockstaele, J. Depuydt, A. Vral, J.P. Slabbert, Induction and disappearance of γH2AX foci and formation of micronuclei after exposure of human lymphocytes to 60Co γ-rays and p(66)+ Be(40) neutrons, Int J. Radiat Biol. 90 (2014).

DOI: 10.3109/09553002.2014.860252

Google Scholar