[1]
A. Wambersie, G.W. Barendsen, N. Breteau, Overview and prospects of the application of fast neutrons in cancer therapy, J Eur Radiother 5 (1984) 248-264.
Google Scholar
[2]
J.J. Battermann, K. Breur, G.A. M Hart, Observations on pulmonary metastases in patients after single doses and multiple fractions of fast neutrons and cobalt-60 gamma rays, Eur J Cancer. 17 (1981) 539-548.
DOI: 10.1016/0014-2964(81)90056-6
Google Scholar
[3]
G. Schmitt, A. Wambersie, Review of the clinical results of fast neutron therapy, Radiother Onkol 17 (1990) 47-57.
Google Scholar
[4]
E.J. Hall, Radiobiological intercomparisons in vivo and in vitro, Int J Radiat Oncol Biol Phys. 3 (1977) 195-201.
Google Scholar
[5]
G.E. Laramore, J.T. Griffith, M. Boespflug, Fast neutron radiotherapy for sarcomas of soft tissue, bone and cartilage, Am J Clin Oncol. 12 (1989) 320 –326.
DOI: 10.1097/00000421-198908000-00009
Google Scholar
[6]
C. Stannard, F. Vernimmen, D. Jones, Neutron Therapy Program at the National Accelerator Centre, South Africa: Preliminary results, Radiat Oncol Invest. 2 (1995) 225-245.
Google Scholar
[7]
D. Van Beuningen, C. Streffer, H. Dellmann, Dünndarmschüden und Überleben von Mausen nach fraktionierten und einmaliger Röntgen –und Neutronenbestrahlung, Strahlenther Onkol. 157 (1981) 753-758.
Google Scholar
[8]
D. Van Beuningen, C. Streffer, G. Berthold, Mikronukleusbildung im Vergleich zür Überlebensrate von Menschlichen Melanoomzellen nach Röntgen -Neutronenbestrahlung und Hyperthermie, Strahlenther Onkol. 157 (1981) 600-606.
Google Scholar
[9]
B.J. Mijnheer, P. Wootton, J. R Williams, Uniformity in dosimetry protocols for therapeutic applications of fast neutron beams, Med Phys. 14 (1987) 1020-1026.
DOI: 10.1118/1.595980
Google Scholar
[10]
W. Sauerwein, W. Ziegler, K. Olthoff, et al. Neutron capture therapy using a fast neutron beam: Clinical considerations and physical aspects, Strahlenther Onkol. 165 (1989) 208–210.
Google Scholar
[11]
L. Van Wijk, C. Stannard, C.V. Levine, et al. Neutron irradiation of uterine sarcomas, Radiat Oncol Invest. 4 (1996) 275–280.
DOI: 10.1002/(sici)1520-6823(1996)4:6<275::aid-roi5>3.0.co;2-v
Google Scholar
[12]
D.H. Hussey, R. Meyn, J.B. Smathers, Neutron therapy. In: Bleehen NM, Galstein E, Haybittle JL, editors. Radiation therapy planning, New York: Marcel Dekker (1983) pp.393-437.
Google Scholar
[13]
G.E. Laramore, J.M. Krall, T.W. Griffin, et al. Neutron versus photon irradiation for irresectable salivary gland tumours: Final report of an RTOG-MRC randomized clinical trial, Int J Radiat Oncol Biol Phys. 27 (1993) 235-240.
DOI: 10.1016/0360-3016(93)90233-l
Google Scholar
[14]
G.W. Barendsen, J.J. Broerse, Differences in radiosensitivity of cells of various types of experimental tumors in relation to the RBE of 15 MeV neutrons, lnt. J. Radiat. Oncol. Biol. Phys. 3 (1977) 211-214.
DOI: 10.1016/0360-3016(77)90251-6
Google Scholar
[15]
J.D. Chapman, Biophysical models of mammalian cell inactivation by radiation. In: Meyn R.H. Withers H. R. (eds. ): Radiation biology in cancer research, Raven Press. New York (1988) 21-31.
Google Scholar
[16]
P.J. Binns, J.H. Hough JH. Lineal energy measurements in two fast neutron beams: d(16)/Be and p(66)/Be, Radiat Prot Dosim. 23 (1988) 385–388.
DOI: 10.1093/rpd/23.1-4.385
Google Scholar
[17]
B. Fertil, P.J. Deschavanne, J. Gueuletle, A. Possoz, A. Wambersie, E.P. Malaise, In vitro radiation of six human cell lines. II. Relation to RBE of 50 MeV neutrons, Radiat. Res. 1982, 90 526-537.
DOI: 10.2307/3575730
Google Scholar
[18]
R.A. Britten, H. M Warenius, C. Parkins, J.H. Peacock, The inherent cellular sensitivity to p(62. 5)/Be neutrons of human cells differing in photon sensitivity, Int J Radiat. Oncol. Biol. Phys. 61 (1992) 805–812.
DOI: 10.1080/09553009214551681
Google Scholar
[19]
H. M Warenius, R.A. Britten, P.G. Browning, I.E. Morton, J.H. Peacock, Identification of human in vitro cell lines with greater intrinsic cellular radiosensitivity tp 62. 5 MeV (p/Be) neutrons than 4 MeV photons, Int. J. Radiation. Oncol. Biol. Phys. 28 (1994).
DOI: 10.1016/0360-3016(94)90112-0
Google Scholar
[20]
J.P. Slabbert, T. Theron, F. Zölzer, C. Streffer, L. Böhm, A comparison of the potential therapeutic gain p(66)/Be neutrons and d(14)/Be neutrons, Int. J. Radiation Oncology Biol. Phys. 47 (2000) 1059-1065.
DOI: 10.1016/s0360-3016(00)00508-3
Google Scholar
[21]
A.M. Kellerer, O. Hug, A theory of dose-effect relations, Encyclop. Med. Radiol. III (1972) 1-42.
Google Scholar
[22]
B. Fertil, H. Dertinger, A. Courdi, E.P. Malais, Mean inactivation dose: a useful concept for intercomparison of human cell survival curves, Radiation Res. 99 (1984) 73-84.
DOI: 10.2307/3576448
Google Scholar
[23]
J.P. Slabbert, T. Theron, A. Serafin, D.T.L. Jones, L. Böhm, G. Schmitt, Radiosensitivity variations in human tumour cell lines exposed in vitro to p(66)/Be neutrons or 60Co-γ-rays, Strahlenther und Onkol. 172 (1996) 567–572.
Google Scholar
[24]
E.R. Hering, An investigation of changes in relative biological effectiveness (RBE) with depth for X-ray beams generated between 100 and 250 kVp using the mouse foot as the biological test system. Int J Radiat Oncol Biol Phys. 12 (1986) 815–821.
DOI: 10.1016/0360-3016(86)90041-6
Google Scholar
[25]
M.R. Raju, Heavy particle radiotherapy. New York: Academic Press. (1980) p.39–72.
Google Scholar
[26]
M. Tubiana, J. Dutreix, A. Wambersie, Introduction to radiobiology. London: Taylor & Francis; (1990) p.273–301.
Google Scholar
[27]
C. Stannard, F. Vernimmen, H. Carrara, D. Jones, S. Fredericks, J. Hille, E. de Kock, Malignant salivary gland tumours: can fast neutron therapy results point the way to carbon ion therapy?, Radiother Oncol. 109 (2013) 262-268.
DOI: 10.1016/j.radonc.2013.08.013
Google Scholar
[28]
J.P. Slabbert, L. August, A. Vral, J. Symons, The relative biological effectiveness of a high energy neutron beam for micronuclei induction in T-lymphocytes of different individuals, Radiation Measurements. 45 (2010) 1455-1457.
DOI: 10.1016/j.radmeas.2010.06.060
Google Scholar
[29]
T. Theron, J.P. Slabbert, A. Serafin, L. Böhm, The merits of cell kinetic parameters for the assessment of intrinsic cellular radiosensitivity to photon and high linear energy transfer neutron irradiation, Int J Radiat Oncol Biol Phys. 37 (1997).
DOI: 10.1016/s0360-3016(96)00533-0
Google Scholar
[30]
J.P. Slabbert, J.H. Langenhoven, B.S. Smit, Synthesis of [123I] iodoantipyrine to study the high-LET characteristics of Auger electrons in mammalian cells, Journal of Radioanalytical and Nuclear Chemistry. 240 (1999) 505-508.
DOI: 10.1007/bf02349403
Google Scholar
[31]
L. Böhm, G. Blekkenhorst, J.P. Slabbert, RBE and OER measurements on the p(66)/Be neutron beam at Faure, South Africa, Strahlenther Onkol. 168 (1992) 42-47.
Google Scholar
[32]
V. Vandersickel, P. Beukes, B. Van Bockstaele, J. Depuydt, A. Vral, J.P. Slabbert, Induction and disappearance of γH2AX foci and formation of micronuclei after exposure of human lymphocytes to 60Co γ-rays and p(66)+ Be(40) neutrons, Int J. Radiat Biol. 90 (2014).
DOI: 10.3109/09553002.2014.860252
Google Scholar