Creation of Submicroporous and Nanoporous Structures in Metallic Materials by Laser Thermocycling as Eutectic Is Reached

Article Preview

Abstract:

The possibilities of forming submicroporous and nanoporous structures in metallic materials by laser thermocycling as eutecticis reached were determined. With the implementation of the selected modes of laser treatment on L62 brass samples with a thickness of 50 µm leads to the formation of wrinkled relief, which indicates an increment of alloy volume in this area, that is, a porosity increment in the metallic material. Submicroporous and nanoporous structures are formed in the copper-zinc L62 alloy sample, which appear on the surface of the sample. Nanopores have a shape similar to equiaxial. Submicropores are formed as a result of nanopores merger. A relief is formed on the surface consisting of depressions having a shape similar to that of a hemisphere and a linear structure, oriented along the direction of rolling process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-249

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.M. Adler, M.C. Campo, J. Caro, et al., Nanoporous materials: advanced techniques for characterization, modeling, and processing, in: N. Kanellopoulos, Boca Raton, US: CRC Press / Taylor & Francis Group, 2011, p.578.

Google Scholar

[2] J. Zhang, C. V Li., Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems, Chem. Soc. Rev. 41(21) (2012) 7016-7031.

DOI: 10.1039/c2cs35210a

Google Scholar

[3] J. Erlebacher, I. McCue, Geometric characterization of nanoporous metals, Acta. Mater. 60(17) (2012) 6164-6174.

DOI: 10.1016/j.actamat.2012.07.059

Google Scholar

[4] H. Qiu, X. Dong, X. Huang, Design of nanoporous metals with bimodal pore size distributions for enhanced biosensing, Nanoscale. 4 (2012) 4492-4497.

DOI: 10.1039/c2nr30460k

Google Scholar

[5] M.F. Sarac, P. Shimpi, J.A. Mackey, D.S. Kim, P. -X. Gao, Surface dezincification and selective oxidation induced heterogeneous semiconductor nanowire/nanofilm network junctions, Cryst. Growth. Des. 10(9) (2010) 3942-3948.

DOI: 10.1021/cg100486g

Google Scholar

[6] M. Tiemann, Porous metal oxides as gas sensors, Chemistry-A European Journal. 13(30) (2007) 8376-8388.

DOI: 10.1002/chem.200700927

Google Scholar

[7] S. Mridha, D. Basak, Investigation of p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications, Semicond. Sci. Tech. 21(7) (2006) 928-932.

DOI: 10.1088/0268-1242/21/7/017

Google Scholar

[8] L. Sun, C. -L. Chien, P.C. Searson, Fabrication of nanoporous nickel by electrochemical dealloying, Chem. Mater. 16(16) (2004) 3125-3129.

DOI: 10.1021/cm0497881

Google Scholar

[9] M. Hakamada, Y. Chino, M. Mabuchi, Nanoporous surface fabricated on metal sheets by alloying/dealloying technique, Mater. Lett. 64(21) (2010) 2341-2343.

DOI: 10.1016/j.matlet.2010.07.046

Google Scholar

[10] J.X. He, S. Baharani, Y.X. Gan, Processing and electrochemical property characterization of nanoporous electrodes for sustainable energy applications, Research Lett. in Nanotechnol. Article ID 313962 (2009) 5p.

DOI: 10.1155/2009/313962

Google Scholar

[11] C.L. Liao, C.W. Chu, K.Z. Fung, I.C. Leu, Fabrication of nanoporous metal electrode by two-step replication technique, J. Alloy Compd. 441(1-2) (2007) L1-L6.

DOI: 10.1016/j.jallcom.2006.09.084

Google Scholar

[12] N.L. Kazanskiy, S.P. Murzin, Ye.L. Osetrov, V.I. Tregub, Synthesis of nanoporous structures in metallic materials under laser action, Opt. Laser. Eng. 49(11) (2011) 1264-1267.

DOI: 10.1016/j.optlaseng.2011.07.001

Google Scholar

[13] S.P. Murzin, N.L. Kazanskiy, Creation of metal materials nanoporous structures under the action of laser radiation, ALT Proceedings. 1: DOI: 10. 12684/alt. 1. 43 (2012) 5p.

DOI: 10.12684/alt.1.43

Google Scholar

[14] S.P. Murzin, Exposure to laser radiation for creation of metal materials nanoporous structures, Opt. Laser Technol. 48 (2013) 509-512.

DOI: 10.1016/j.optlastec.2012.11.031

Google Scholar

[15] S.P. Murzin, Method of composite nanomaterials synthesis under metal/oxide pulse-periodic laser treatment, Computer Optics. 38(3) (2014) 469-475.

DOI: 10.18287/0134-2452-2014-38-3-469-475

Google Scholar

[16] S.P. Murzin, V.I. Tregub, A.A. Melnikov, N.V. Tregub, Application of radiation focusators for creation of nanoporous metal materials with high specific surface area by laser action, Computer Optics. 37(2) (2013) 227-233.

DOI: 10.18287/0134-2452-2013-37-2-226-232

Google Scholar

[17] S.P. Murzin, V.I. Tregub, E.V. Shokova, N.V. Tregub, Thermocycling with pulse-periodic laser action for formation of nanoporous structure in metal material, Computer Optics 37(1) (2013) 99-104.

DOI: 10.18287/0134-2452-2013-37-1-99-104

Google Scholar

[18] S.P. Murzin, Synthesis of metal materials nanoporous structures with cyclic elasto-plastic deformation under laser treatment using radiation focusators, Computer Optics. 38(2) (2014) 249-255.

DOI: 10.18287/0134-2452-2014-38-2-249-255

Google Scholar

[19] P. Strunz, D. Mukherji, J. Saroun, U. Keiderling, J. Rösler, Pore structure characterization and in-situ diffusion test in nanoporous membrane using SANS, Conference Series 247 (2010) 012023, 8p.

DOI: 10.1088/1742-6596/247/1/012023

Google Scholar

[20] D. Mukherji, J. Lackne, N. Wanderka, N. Kardjilov, O. Näth, S. Jäger, F. Schmitz, J. Rösler, Coating of meso-porous metallic membranes with oriented channel-like fine pores by pulsed laser deposition, Nanotechnology 19(6) (2008) 065706, 8p.

DOI: 10.1088/0957-4484/19/6/065706

Google Scholar

[21] H. -J. Jin, J. Weissmüller, Bulk nanoporous metal for actuation, Adv. Eng. Mater. 12(8) (2010) 714-723.

DOI: 10.1002/adem.200900329

Google Scholar