Fracture Toughness and Hardness of Ti(C0.7N0.3)-19Mo2C-xNbC-24Ni

Article Preview

Abstract:

The fracture toughness and hardness of Ti (C0.7N0.3)-19Mo2C-xNbC-24Ni cermets (x = 0, 5, 20) were studied. Fracture toughness of 5 NbC was the largest, and it of 20 NbC was the lowest. The microstructures of all the cermets consisted of Ti (C,N) and solid soluted Ti (C,N) hard phase, and Ni binder phase. The solid soluted Ti (C,N) surrounded Ti (C,N), namely, core-rim structures were observed in 0NbC and 5NbC. On the other hand, the isolated Ti (C,N) and solid soluted Ti (C,N) were observed in 20NbC, as a result of the phase separation between Ti (C,N) core and solid soluted Ti (C,N).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-259

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Humenik Jr, N.M. Parikh, Cermets: I, Fundamental Concepts Related to Micro-structure and Physical Properties of Cermet Systems , J. Am. Ceram. Soc. 39 (1956) 60-63.

DOI: 10.1111/j.1151-2916.1956.tb15624.x

Google Scholar

[2] S. Zhang, Titanium carbonitride-based cermets, processes and properties, Mater. Sci. Eng. A163 (1993) 141-148.

Google Scholar

[3] P. Ettmayer, H. Kolaska, W. Lengauer, K. Dreyer, Ti(C, N) cermets — Metallurgy and properties, Int. J. Refract. Met. Hard Mater. 13 (1995) 343-351.

DOI: 10.1016/0263-4368(95)00027-g

Google Scholar

[4] F. Qi, S. Kang, A study on microstructural changes in Ti(CN)–NbC–Ni cermets, Mater. Sci. Eng. A251(1998) 276–285.

DOI: 10.1016/s0921-5093(98)00609-1

Google Scholar

[5] A.S. -Yong, K. S. -Won, S. Kang , Microstructure of Ti(C, N)-WC-NbC-Ni cermets, J. Am. Ceram. Soc. 84 (2001) 843-849.

DOI: 10.1111/j.1151-2916.2001.tb00750.x

Google Scholar

[6] W. Jun, L. Ying, F. Yan, Y. Jinwen, T. Mingjing, Effect of NbC on the microstructure and sinterability of Ti(C0. 7, N0. 3)-based cermets, Int. J. Refract. Met. Hard Mater. 27 (2009) 549–551.

Google Scholar

[7] S. Kim, J. -M. Zuo, S. Kang, Effect of WC or NbC addition on lattice parameter of surrounding structure in Ti(C0. 7N0. 3)–Ni cermets investigated by TEM/CBED, J. Euro. Ceram. Soc. 30 (2010) 2131-2138.

DOI: 10.1016/j.jeurceramsoc.2010.03.006

Google Scholar

[8] M. Ueki, Studies on the Relation between Microstructures and Cutting Performance of Titanium Carbide Based Cermet Containing Nitrogen, J. Jpn. Soc. Powder Powder Metallurgy, 40 (1993) 743-750.

DOI: 10.2497/jjspm.40.743

Google Scholar

[9] M. Ueki, T. Saito, T. Saito, K. Kitamura, H. Suzuki, Properties of TiC-TiN-Mo2C-Ni Alloy Affected Mainly by Additional Tantalum or Tungusten Carbide, J. Jpn. Soc. Powder Powder Metallurgy, 35 (1985) 27-32.

DOI: 10.2497/jjspm.35.27

Google Scholar

[10] H. Suzuki, K. Hayashi, T. Yamamoto, Effects of a Small Amount of Additional Carbides on High-Temperature Strength of TiC-Mo2C-Ni Cermets, J. Jpn. Soc. Powder Powder Metallurgy, 26 (1979) 22-26.

DOI: 10.2497/jjspm.26.22

Google Scholar

[11] H. Suzuki, K. Hayashi, O. Terada, Effects of Addition of Carbides on the Strength of TiC-Mo2C-Ni(Co) Alloys, J. Jpn. Soc. Powder Powder Metallurgy, 25 (1978) 132-135.

DOI: 10.2497/jjspm.25.132

Google Scholar

[12] E. Ohtsuki, H. Fulita, T. Kito, Y. Masuda, Fracture Toughness and Limiting Strength of Cermets, J.Japan Inst.Metals, 47 (1983) 568-574.

Google Scholar

[13] K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett. 1 (1982) 13-16.

DOI: 10.1007/bf00724706

Google Scholar

[14] T. Ogura, T. Shoji, A. Sasaki, O. Terada, H. Hayashi, Koushitsuzairyou no hanaijinsei ni oyobosu ketugousouryou no eikyou. Abs. Aut. Meet. J. Soc. Powde Powder Met. (2009) 132.

Google Scholar