[1]
Y. Saotome, T. Hatori, et al., Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5 amorphous alloy in supercooled liquid state. Mater. Sci. Eng. A (2001) 716-720.
DOI: 10.1016/s0921-5093(00)01593-8
Google Scholar
[2]
Y. Saotome, K. Itoh, T. Zhang, A. Inoue, Superplastic nanoforming of Pd-based amorphous alloy. Scripta Mater. 44 (2001) 1541-1545.
DOI: 10.1016/s1359-6462(01)00837-5
Google Scholar
[3]
Y.Q. Zeng, A. Inoue, et al., Remarkable effect of minor boron doping on the formation of the largest size Ni-rich bulk metallic glasses. Scripta Mater. 60 (2009) 925-928.
DOI: 10.1016/j.scriptamat.2008.12.044
Google Scholar
[4]
Q.S. Zhang, W. Zhang, et al., Ni-free Zr-Fe-Al-Cu bulk metallic glasses with high glass-forming ability. Scripta Mater. 61 (2009) 241-244.
DOI: 10.1016/j.scriptamat.2009.03.056
Google Scholar
[5]
Z. -h. Zhang, X. -h. Liu, et al., Superplastic forming properties of Zr-based bulk amorphous alloys. Chinese Journal of Nonferrous Metals|Chinese Journal of Nonferrous Metals 14 (2004) 1073-1077.
Google Scholar
[6]
J. Cao, N. Krishnan, et al., Microforming: Experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM. J. Manu. Sci. Eng. -Transactions of the Asme 126 (2004) 642-652.
DOI: 10.1115/1.1813468
Google Scholar
[7]
W.J. Kim, Y.K. Sa, Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Mater. 54 (2006) 1391-1395.
DOI: 10.1016/j.scriptamat.2005.11.066
Google Scholar
[8]
M. Heilmaier, J. Eckert, Elevated temperature deformation behavior of Zr-based bulk metallic glasses. Adv. Eng. Mater. 7 (2005) 833-841.
DOI: 10.1002/adem.200500080
Google Scholar
[9]
G. Kumar, J. Schroers, Write and erase mechanisms for bulk metallic glass. Appl. Phys. Lett. 92 (2008).
DOI: 10.1063/1.2834712
Google Scholar
[10]
G. Kumar, H.X. Tang, et al., Nanomoulding with amorphous metals. Nature 457 (2009) 868-U128.
Google Scholar
[11]
G. Wang, J. Shen, et al., Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid recgion. J. Non-Cryst. Solids 351 (2005) 209-217.
DOI: 10.1016/j.jnoncrysol.2004.11.006
Google Scholar
[12]
H.M. Chiu, G. Kumar, et al., Thermoplastic extrusion of bulk metallic glass. Scripta Mater. 61 (2009) 28-31.
DOI: 10.1016/j.scriptamat.2009.02.052
Google Scholar
[13]
W.J. Kim, J.B. Lee, et al., Superplastic gas pressure forming of Zr65Al10Ni10Cu15 metallic glass sheets fabricated by squeeze mold casting. Mater. Sci. Eng. A 428 (2006) 205-210.
DOI: 10.1016/j.msea.2006.05.002
Google Scholar
[14]
W.J. Kim, S.J. Yoo, et al., Superplastic microforming of Mg-9Al-1Zn alloy with ultrafine-grained microstructure. Scripta Mater. 59 (2008) 599-602.
DOI: 10.1016/j.scriptamat.2008.05.014
Google Scholar
[15]
X. Wu, J.J. Li, et al., Micro-back-extrusion of a bulk metallic glass. Scripta Mater. 63 (2010) 469-472.
DOI: 10.1016/j.scriptamat.2010.05.004
Google Scholar
[16]
Y. Saotome, H. Iwazaki, Superplastic extrusion of microgear shaft of 10 mu m in module. Microsyst. Technol. 6 (2000) 126-129.
DOI: 10.1007/s005420050180
Google Scholar
[17]
Y. Saotome, H. Iwazaki, Superplastic extrusion of microgear shaft with photochemically machinable glass dies. Micro Mater., Proceedings (2000) 982-982.
Google Scholar
[18]
Y. Saotome, H. Iwazaki, Superplastic backward microextrusion of microparts for micro-electro-mechanical systems. J. Mater. Process. Tech. 119 (2001) 307-311.
DOI: 10.1016/s0924-0136(01)00957-8
Google Scholar
[19]
K.C. Chan, Q. Chen, et al., Deformation behavior of Zr55. 9Cu18. 6Ta8Al7. 5Ni10 bulk metallic glass matrix composite in the supercooled liquid region. Intermetallics 15 (2007) 500-505.
DOI: 10.1016/j.intermet.2006.09.002
Google Scholar
[20]
M.D. Demetriou, W.L. Johnson, Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1. Acta Mater. 52 (2004) 3403-3412.
DOI: 10.1016/j.actamat.2004.03.034
Google Scholar
[21]
H. Kato, Y. Kawamura, et al., Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20. Appl. Phys. Lett. 73 (1998) 3665-3667.
DOI: 10.1063/1.122856
Google Scholar
[22]
Z.Z. Zheng, J. Cheng, et al., Study on the Friction Behavior and Mechanism of Zr-based Bulk Metallic Glass Superplastic Forming in the Supercooled Liquid Region, China Mech. Eng., 2009, 20(20): 2510-2513.
Google Scholar
[23]
X.Y. Wang, N. Tang, et al., A Maxwell-pulse constitutive model of Zr55Cu30Al10Ni5 bulk metallic glasses in supercooled liquid region. J. Alloy. Compd. 509 (2011) 2518-2522.
DOI: 10.1016/j.jallcom.2010.11.070
Google Scholar
[24]
K.C. Chan, L. Liu, et al., Superplastic deformation of Zr55Cu30Al10Ni5 bulk metallic glass in the supercooled liquid region, 12th International Conference on Liquid and Amorphous Metals (LAM12), Metz, FRANCE, 2004, pp.3758-3763.
DOI: 10.1016/j.jnoncrysol.2007.05.143
Google Scholar
[25]
J. Schroers, On the formability of bulk metallic glass in its supercooled liquid state. Acta Mater. 56 (2008) 471-478.
DOI: 10.1016/j.actamat.2007.10.008
Google Scholar
[26]
Wu Xiao, Li Jianjun, et al., Experimental Study on Micro- backward Extrusion of a Zr- based Metall ic Glass in Its Super-cooled Liquid Region[J], China Mech. Eng., 2010, 21(15): 1864-1868.
Google Scholar
[27]
L. Liu, Z.F. Wu, et al., Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy. J. Alloy. Compd. 339 (2002) 90-95.
DOI: 10.1016/s0925-8388(01)01977-6
Google Scholar
[28]
M. Heggen, F. Spaepen, et al., Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys. 97 (2005).
DOI: 10.1063/1.1827344
Google Scholar
[29]
P.N. Zhang, J.F. Li, et al., Structure evolution of bulk Zr60Cu20Pd10Al10 amorphous alloy during rolling deformation. J. Mate. Sci. 43 (2008) 7179-7183.
DOI: 10.1007/s10853-008-3019-x
Google Scholar