The Effect of Forming Speed on the Formability of a Zr-Based Bulk Metallic Glass

Article Preview

Abstract:

Taking cup-shaped part (outer diameter D and wall thickness are chosen as 2.2 mm and 0.05 mm, respectively) as an example, the micro-back-extrusion forming process of a Zr55Cu30 Al10Ni5 bulk metallic glass (BMG) in its supercooled liquid region was studied by using finite-element analysis (FEM) and experiment. The effect of forming speed on the formability was analyzed based on the extrusion load, the rheological behavior of the material and the microstructure of the formed parts. It was found that while the forming speed is below than 4 μm/s, the extrusion load increases obviously with the increasing in forming speed, otherwise, the BMG will follow non-newtonian flow and the forming load is insensitive to the forming speed. The parts fabricated at 2 μm/s are obviously crystallized due to the long retention time of metallic glasses at high temperature, a higher forming speed is benefit to enhancing the formability if the BMG. On this basis, micro cup-shaped parts with only 0.05 mm in wall thickness are successfully extruded.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

265-271

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Saotome, T. Hatori, et al., Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5 amorphous alloy in supercooled liquid state. Mater. Sci. Eng. A (2001) 716-720.

DOI: 10.1016/s0921-5093(00)01593-8

Google Scholar

[2] Y. Saotome, K. Itoh, T. Zhang, A. Inoue, Superplastic nanoforming of Pd-based amorphous alloy. Scripta Mater. 44 (2001) 1541-1545.

DOI: 10.1016/s1359-6462(01)00837-5

Google Scholar

[3] Y.Q. Zeng, A. Inoue, et al., Remarkable effect of minor boron doping on the formation of the largest size Ni-rich bulk metallic glasses. Scripta Mater. 60 (2009) 925-928.

DOI: 10.1016/j.scriptamat.2008.12.044

Google Scholar

[4] Q.S. Zhang, W. Zhang, et al., Ni-free Zr-Fe-Al-Cu bulk metallic glasses with high glass-forming ability. Scripta Mater. 61 (2009) 241-244.

DOI: 10.1016/j.scriptamat.2009.03.056

Google Scholar

[5] Z. -h. Zhang, X. -h. Liu, et al., Superplastic forming properties of Zr-based bulk amorphous alloys. Chinese Journal of Nonferrous Metals|Chinese Journal of Nonferrous Metals 14 (2004) 1073-1077.

Google Scholar

[6] J. Cao, N. Krishnan, et al., Microforming: Experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM. J. Manu. Sci. Eng. -Transactions of the Asme 126 (2004) 642-652.

DOI: 10.1115/1.1813468

Google Scholar

[7] W.J. Kim, Y.K. Sa, Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Mater. 54 (2006) 1391-1395.

DOI: 10.1016/j.scriptamat.2005.11.066

Google Scholar

[8] M. Heilmaier, J. Eckert, Elevated temperature deformation behavior of Zr-based bulk metallic glasses. Adv. Eng. Mater. 7 (2005) 833-841.

DOI: 10.1002/adem.200500080

Google Scholar

[9] G. Kumar, J. Schroers, Write and erase mechanisms for bulk metallic glass. Appl. Phys. Lett. 92 (2008).

DOI: 10.1063/1.2834712

Google Scholar

[10] G. Kumar, H.X. Tang, et al., Nanomoulding with amorphous metals. Nature 457 (2009) 868-U128.

Google Scholar

[11] G. Wang, J. Shen, et al., Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid recgion. J. Non-Cryst. Solids 351 (2005) 209-217.

DOI: 10.1016/j.jnoncrysol.2004.11.006

Google Scholar

[12] H.M. Chiu, G. Kumar, et al., Thermoplastic extrusion of bulk metallic glass. Scripta Mater. 61 (2009) 28-31.

DOI: 10.1016/j.scriptamat.2009.02.052

Google Scholar

[13] W.J. Kim, J.B. Lee, et al., Superplastic gas pressure forming of Zr65Al10Ni10Cu15 metallic glass sheets fabricated by squeeze mold casting. Mater. Sci. Eng. A 428 (2006) 205-210.

DOI: 10.1016/j.msea.2006.05.002

Google Scholar

[14] W.J. Kim, S.J. Yoo, et al., Superplastic microforming of Mg-9Al-1Zn alloy with ultrafine-grained microstructure. Scripta Mater. 59 (2008) 599-602.

DOI: 10.1016/j.scriptamat.2008.05.014

Google Scholar

[15] X. Wu, J.J. Li, et al., Micro-back-extrusion of a bulk metallic glass. Scripta Mater. 63 (2010) 469-472.

DOI: 10.1016/j.scriptamat.2010.05.004

Google Scholar

[16] Y. Saotome, H. Iwazaki, Superplastic extrusion of microgear shaft of 10 mu m in module. Microsyst. Technol. 6 (2000) 126-129.

DOI: 10.1007/s005420050180

Google Scholar

[17] Y. Saotome, H. Iwazaki, Superplastic extrusion of microgear shaft with photochemically machinable glass dies. Micro Mater., Proceedings (2000) 982-982.

Google Scholar

[18] Y. Saotome, H. Iwazaki, Superplastic backward microextrusion of microparts for micro-electro-mechanical systems. J. Mater. Process. Tech. 119 (2001) 307-311.

DOI: 10.1016/s0924-0136(01)00957-8

Google Scholar

[19] K.C. Chan, Q. Chen, et al., Deformation behavior of Zr55. 9Cu18. 6Ta8Al7. 5Ni10 bulk metallic glass matrix composite in the supercooled liquid region. Intermetallics 15 (2007) 500-505.

DOI: 10.1016/j.intermet.2006.09.002

Google Scholar

[20] M.D. Demetriou, W.L. Johnson, Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1. Acta Mater. 52 (2004) 3403-3412.

DOI: 10.1016/j.actamat.2004.03.034

Google Scholar

[21] H. Kato, Y. Kawamura, et al., Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20. Appl. Phys. Lett. 73 (1998) 3665-3667.

DOI: 10.1063/1.122856

Google Scholar

[22] Z.Z. Zheng, J. Cheng, et al., Study on the Friction Behavior and Mechanism of Zr-based Bulk Metallic Glass Superplastic Forming in the Supercooled Liquid Region, China Mech. Eng., 2009, 20(20): 2510-2513.

Google Scholar

[23] X.Y. Wang, N. Tang, et al., A Maxwell-pulse constitutive model of Zr55Cu30Al10Ni5 bulk metallic glasses in supercooled liquid region. J. Alloy. Compd. 509 (2011) 2518-2522.

DOI: 10.1016/j.jallcom.2010.11.070

Google Scholar

[24] K.C. Chan, L. Liu, et al., Superplastic deformation of Zr55Cu30Al10Ni5 bulk metallic glass in the supercooled liquid region, 12th International Conference on Liquid and Amorphous Metals (LAM12), Metz, FRANCE, 2004, pp.3758-3763.

DOI: 10.1016/j.jnoncrysol.2007.05.143

Google Scholar

[25] J. Schroers, On the formability of bulk metallic glass in its supercooled liquid state. Acta Mater. 56 (2008) 471-478.

DOI: 10.1016/j.actamat.2007.10.008

Google Scholar

[26] Wu Xiao, Li Jianjun, et al., Experimental Study on Micro- backward Extrusion of a Zr- based Metall ic Glass in Its Super-cooled Liquid Region[J], China Mech. Eng., 2010, 21(15): 1864-1868.

Google Scholar

[27] L. Liu, Z.F. Wu, et al., Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy. J. Alloy. Compd. 339 (2002) 90-95.

DOI: 10.1016/s0925-8388(01)01977-6

Google Scholar

[28] M. Heggen, F. Spaepen, et al., Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys. 97 (2005).

DOI: 10.1063/1.1827344

Google Scholar

[29] P.N. Zhang, J.F. Li, et al., Structure evolution of bulk Zr60Cu20Pd10Al10 amorphous alloy during rolling deformation. J. Mate. Sci. 43 (2008) 7179-7183.

DOI: 10.1007/s10853-008-3019-x

Google Scholar