[1]
A.J. Gu, High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties, Compos. Sci. Technol. 66 (2006) 1749-1755.
DOI: 10.1016/j.compscitech.2005.11.001
Google Scholar
[2]
V. Rao, S. Navath, M. Kottur, J.R. McElhanon, D.V. McGrathet, An efficient reverse Diels-Alder approach for the synthesis of N-alkyl bismaleimide, Tetrahedron Lett. 54 (2013) 5011-5013.
DOI: 10.1016/j.tetlet.2013.07.002
Google Scholar
[3]
T. Iijima, N Hayashi, T. Oyama, M. Tomoi, Modification of bismaleimide resin by soluble poly(ester imide) containing trimellitimide moieties Polym. Int. 53 (2004) 1417–1425.
DOI: 10.1002/pi.985
Google Scholar
[4]
R.J. Morgan, E.E. Shin, B. Rosenberg, A. Jurek, Characterization of the cure reactions of bismaleimide composite matrices. Polymer, 38 (1997) 639-646.
DOI: 10.1016/s0032-3861(96)00542-3
Google Scholar
[5]
H X Yan, Y Jia , L. Ma, et al. Tribological Properties of Benzoxazine-Bismaleimides Composites with Functionalized Nano-SiO2, J. Appl. Polym. Sci. 129 (2013) 3150-3155.
DOI: 10.1002/app.39031
Google Scholar
[6]
Y. Jia , H. X. Yan , L. Ma,J.P. Zhang, Improved mechanical and tribological properties of benzoxazine-bismaleimides resin by surface-functionalized carbon nanotubes, J. Appl. Polym. Sci., 21 (2014) 1-7.
DOI: 10.1007/s10965-014-0499-z
Google Scholar
[7]
T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 358 (1992) 220–222.
DOI: 10.1038/358220a0
Google Scholar
[8]
R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon 33 (1995) 925–930.
DOI: 10.1016/0008-6223(95)00021-5
Google Scholar
[9]
W. X. Chen, F. Li, G Han, L.Y. Wang, J.P. Tu, Z.D. Xu, Tribological behaviour of carbon-nanotube filled PTFE composites. Tribol. Lett. 15 (2003) 275–278.
Google Scholar
[10]
J. N. Coleman, U. Khan ,Y. K. Gunko, Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater, 18 (2006) 689-706.
DOI: 10.1002/adma.200501851
Google Scholar
[11]
Y. Chen, G. M. Smith, E. Loughman, Y. Li, W. Nie, D.L. Carroll, Effect of multi-walled carbon nanotubes on electron injection and charge generation in AC field-induced polymer electroluminescence, Org. Electron. 14 (2013) 8-18.
DOI: 10.1016/j.orgel.2012.10.017
Google Scholar
[12]
P. Jindal, S. Pande, P. Sharma , V. Mangla., A. Chaudhuryb, D. Patelb, B.P. Singhb, R.B. Mathurb, M. Goyal, High strain rate behavior of multi-walled carbon nanotubes–polycarbonate composites, Compos. Part B: Eng. 45 (2013) 417-422.
DOI: 10.1016/j.compositesb.2012.06.018
Google Scholar
[13]
S. G. Gaynor, S. Edelman, K. Matyjaszewski, Synthesis of branched and hyperbranched polystyrenes, Macromolecules 29 (1996) 1079-1081.
DOI: 10.1021/ma9513877
Google Scholar
[14]
D. X. Zhuo, A.J. Gu, G. Z. Liang, J. T. Hu, L. Yuan, X. X. Chen, Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/ diallylbisphenol A resin with simultaneously improved integrated performance, J. Mater. Chem., 21 (2011).
DOI: 10.1039/c1jm10233h
Google Scholar
[15]
H. X. Yan, Y. Jia, L. Ma, Y.L. Wang, Functionaized multiwalled carbon nanotubes by grafting hyperbranched polysiloxane, Nano 9 (2014) DOI: 10. 1142/S1793292014500404.
DOI: 10.1142/s1793292014500404
Google Scholar
[16]
M. M. Zhang, H. X. Yan, C. Gong, T.T. Li, Hyperbranched polysiloxane functionalized graphene oxide for dicyclopentadiene bisphenol dicyanate ester nanocomposites with high performance, Express Polym. Lett. 8 (2014) 413-424.
DOI: 10.3144/expresspolymlett.2014.45
Google Scholar
[17]
T. T. Li, H. X. Yan, T.Y. Liu, et al, Carbon nanotubes grafted with hyperbranched triazine compounds, Nano, 10 (2015) DOI: 10. 1142/S1793292015500125.
DOI: 10.1142/s1793292015500125
Google Scholar
[18]
L.N. Liu, A. J. Gu , Z. P. Fang ,L.F. Tong, Z.B. Xu, The effects of the variations of carbon nanotubes on the micro-tribological behavior of carbon nanotubes/bismaleimide nanocomposite, Compos. Part A. 38 (2007)1957–(1964).
DOI: 10.1016/j.compositesa.2007.06.003
Google Scholar
[19]
H. Meng, G. X. Sui , G.Y. Xie , R. Yang, Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition, Compos. Sci. Technol. 69 (2009) 606-611.
DOI: 10.1016/j.compscitech.2008.12.004
Google Scholar
[20]
D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3, (2008) 101-105.
DOI: 10.1038/nnano.2007.451
Google Scholar
[21]
W.J. Li, X.Z. Tang, H.B. Zhang, Z.G. Jiang, Z.Z. Yua, X.S. Du, Y.W. Mai, Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites,Carbon 49 (2011) 4724–4730.
DOI: 10.1016/j.carbon.2011.06.077
Google Scholar
[22]
S. Park, J.H. An, R.D. Piner, I. Jun, D.X. Yang, A. Velamakanni, S.T. Nguyen, R.S. Ruoff, Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chem. Mater. 20, 21 (2008) 6592-6594.
DOI: 10.1021/cm801932u
Google Scholar