New Biomimetic Hybrid Nanocomposites for early Fixation Prostheses

Article Preview

Abstract:

The research develops and tests new hybrid biomimetic materials that work as mechanically stimulating "scaffolds" to promote early regeneration in implanted bone healing phases. A biomimetic nanostructured osteoconductive material coated apparatus is presented. Bioinspired approaches to materials and templated growth of hybrid networks using self-assembled hybrid organic-inorganic interfaces is finalized to extend the use of hybrids in the medical field. Combined in vivo, in vitro and computer aided simulations have been carried out. A new experimental methodology for the identification of design criteria for new innovative prosthetic implant systems is presented. The new implant design minimizes the invasiveness of treatments while improving implant functional integration. A new bioactive ceramo-polymeric hybrid material was used to modify odontostomatological Titanium implants in order to promote early fixation, biomechanical stimulation for improved scaffold mineralization and ossification. It is a hybrid ceramo-polymeric nanocomposites based on Hydroxyl-Ethyl-Methacrylate polymer (pHEMA) filled with nanosilica particles that have shown biomimetic characteristics. This material swells in presence of aqueous physiological solution leading to the achievement of two biomechanical functions: prosthesis early fixation after and bone growth stimulation. Such multidisciplinary approach explores novel ideas in modelling, design and fabrication of new nanostructured biomaterials with enhanced functionality and improved interaction with OB cells

You might also be interested in these eBooks

Info:

Periodical:

Pages:

487-494

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Montheard JP, Chatzopoulos M, Chappard D. 2-hydroxyethylmethacrylate HEMA; chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev 1992; 32: 1–34.

DOI: 10.1080/15321799208018377

Google Scholar

[2] Filmon R, Grizon F, Baslie MF, Chappard D. Effects of negatively charged groups (carboxymethyl) on the calcification of poly(2-hydroxyethylmethacrylate). Biomaterials 2002; 23: 3053–9.

DOI: 10.1016/s0142-9612(02)00069-8

Google Scholar

[3] Davis PA, Huang SJ, Nicolais L, Ambrosio L. Modified PHEMA Hydrogels. In: Szycher M, editor. High performance biomaterials. Lancaster, PA, USA: Technonic; 1991. p.343.

DOI: 10.1201/9780203752029-22

Google Scholar

[4] Kabra B, Gehrke SH, Hwang ST, Ritschel W. Modification of the dynamic swelling behaviour of pHEMA. J Appl Polym Sci 1991; 42: 2409–16.

DOI: 10.1002/app.1991.070420906

Google Scholar

[5] Apicella A, Cappello B, Del Nobile MA, La Rotonda MI, Mensitieri G, Nicolais L. Poly(ethylene oxide) (PEO) and different molecular weight PEO's blends monolithic devices for drug release. Biomaterials 1993; 142: 83–90.

DOI: 10.1016/0142-9612(93)90215-n

Google Scholar

[6] Peluso G, Petillo O, Anderson JM, Ambrosio M, Nicolais L, Melone MAB, Eschbach FO, Huang SJ. The differential effects of poly(2-hydroxyethylmethacrylate) and poly(2-hydroxyethylmethacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts. J Biomed Mater Res 1997; 34: 327–36.

DOI: 10.1002/(sici)1097-4636(19970305)34:3<327::aid-jbm7>3.0.co;2-m

Google Scholar

[7] Schiraldi C, D, ' Agostino A, Oliva A, Flamma F, De Rosa A, Apicella A, Aversa R, De Rosa M (2004).

DOI: 10.1016/j.biomaterials.2003.10.059

Google Scholar

[8] Aversa R, Apicella D, Perillo L, Sorrentino R, Zarone F, Ferrari F, Apicella A (2009).

Google Scholar

[9] Sorrentino R, Aversa R, Ferro V, Auriemma T, Zarone F, Ferrari M, Apicella A. Three-dimensional finite element analysis of strain and stress distributions in endodontically treated maxillary central incisors restored with different post, core and crown materials. Dent Mater 2007; 23: 983–93.

DOI: 10.1016/j.dental.2006.08.006

Google Scholar

[10] Frost HM. Structural adaptations to mechanical usage (SATMU). 1. Redifining Wolff's law: the bone modelling problem. Anat Rec 1990; 226: 403–13.

DOI: 10.1002/ar.1092260402

Google Scholar

[11] Frost HM. Structural adaptations to mechanical usage (SATMU). 2. Redifining Wolff's law: the bone remodelling problem. Anat Rec 1990; 226: 414–22.

DOI: 10.1002/ar.1092260403

Google Scholar

[12] Wolff J. Das Gesetz der Transformation der Knochen. Berlin: A Hirschwald; 1892.

Google Scholar

[13] Frost HM. Mathematical elements of lamellar bone remodeling. Springfield: Charles C Thomas; 1964. p.22–25.

Google Scholar

[14] Frost HM. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthod 2004; 74: 3–15.

Google Scholar

[15] Frost HM. Wolff's law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 1994; 64: 175–88.

Google Scholar

[16] Apicella A, Hopfenberg Hb. Water-Swelling Behavior Of An Ethylene-Vinyl Alcohol Copolymer In The Presence Of Sorbed Sodium Chloride. Journal Of Applied Polymer Science, 1982; Vol. 27(4), P. 1139-1148, Issn: 0021-8995.

DOI: 10.1002/app.1982.070270404

Google Scholar

[17] Nicolais L, Apicella A, De Notaristefano C. Time-Temperature Superposition Of N-Hexane Sorption In Polystyrene. Journal Of Membrane Science, 1984; Vol. 18, P. 187-196, Issn: 0376-7388.

DOI: 10.1016/s0376-7388(00)85033-4

Google Scholar

[18] Schwartz-Dabney, C.L. & Dechow, P.C. (2003) Variation in Cortical Material Properties Throughout the Human Dentate Mandible. American Journal of Physical Anthropology 120: 252-277.

DOI: 10.1002/ajpa.10121

Google Scholar

[19] J Töyräsa, T Lyyra-Laitinena, M Niinimäkib, R Lindgrenc, M. T Nieminenb, I Kivirantad, J. S Jurvelina, Estimation of the Young's modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. Journal of Biomechanics, Volume 34, Issue 2, 2001, 251-256.

DOI: 10.1016/s0021-9290(00)00189-5

Google Scholar

[20] J.C. Halpin and J. L. Kardos; Halpin-Tsai equations: A review, Polymer Engineering and Science, 1976, v16, N5, pp.344-352.

DOI: 10.1002/pen.760160512

Google Scholar

[21] H. U. COMERON, Six-year results with a microporous-coated metal hip prosthesis, Clin. Orthop. 208 (1986) 81.

Google Scholar

[22] L. Nicolais, A. Apicella, C. de Notaristefano, Time-temperature superposition of n-hexane sorption in polystyrene, Journal of Membrane Science 18, Issue C, 1984, 187-196.

DOI: 10.1016/s0376-7388(00)85033-4

Google Scholar

[23] R Sorrentino, R Aversa, S Russo, EF Gherlone, F Zarone, A Apicella, In vitro analysis of the primary stability of implants scaffolded by means of an innovative hybrid ceramo-polymeric nanocomposite material. EUROPEAN JOURNAL OF ORAL IMPLANTOLOGY (2014).

DOI: 10.1016/j.dental.2014.08.196

Google Scholar

[24] Gramanzini M, Gargiulo S, Sorrentino R, Zarone F, Apicella A, Brunetti A (2014).

Google Scholar