Optically-Enhanced Polymer Bulk Heterojunction Solar Cells by Addition of Gold Nanostructures

Article Preview

Abstract:

We investigate the effects of Au nanoparticles (Au NPs) on poly [N-9′′-hepta-decanyl-2,14-carbazole-alt-5,5-(4′,14′-di-2-thienyl-2′,1,3′-benzothiadiazole)]:ph-enyl-C61-butyric acid methyl ester (PCDTBT:PCBM) based organic photovoltaic (OPV) devices by thermal evaporating Au NPs onto polytetrafluoroethylene (PTFE) layer which is based on indium-tin-oxide (ITO) glass substrate.Significant improvement in terms of short-circuit current density (Jsc) by 33.6%, fill factor (FF) by 0.9%, and thereby commensurate power conversion efficiency (PCE) by 40.7% were achieved compared to devices without Au NPs. The OPVs performance enhancement is attributed to the formation of Au NPs-induced surface plasmons that increases the rate of exciton generation, and the probability of exciton dissociation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-217

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] You, J., Chen, C. -C., Dou, L., Murase, S., Duan, H. -S., Hawks, S. A., Xu, T., Son, H. J., Yu, L., Li, G. and Yang,Y.: Adv. Mater. Vol. 24 (2012), p.5267–5272.

DOI: 10.1002/adma.201201958

Google Scholar

[2] Martínez-Otero, A., Elias, X., Betancur, R. and Martorell, J.: Advanced Optical Materials, Vol. 1(2013), p.36.

Google Scholar

[3] Bonan Kang, L. W. Tan, and S. R. P. Silva: Appl. Phys. Lett. Vol. 93(2008), p.133302.

Google Scholar

[4] Dowland, S., Lutz, T., Ward, A., King, S. P., Sudlow, A., Hill, M. S. and Haque, S. A.: Adv. Mater., Vol. 23(2011), p.2739–2744.

DOI: 10.1002/adma.201100625

Google Scholar

[5] Li, W., Hendriks, K. H., Roelofs, W. S. C., Kim, Y., Wienk, M. M. and Janssen, R. A. J.: Adv. Mater. Vol. 25(2013), p.3256.

Google Scholar

[6] Yuan, Kai, Chen, Lie and Chen, Yiwang, Polymer International. Vol. 4(2014), pp.593-606.

Google Scholar

[7] Yao, K., Salvador, M., Chueh, Chu-Chen, Xin, Xu-Kai, Xu, Yun-Xiang, deQuilettes, D. W., Hu, T., Chen, Y., Ginger, D. S., Jen, A. K. -Y.: Adv. Energy Mater., Vol 4 (2014), p.1400206.

DOI: 10.1002/aenm.201400206

Google Scholar

[8] Wang, D. Hwan, Kim, Do Youb, Choi, K. Woo, Seo, J. Hwa, Im, S. Hyuk, Park, J. Hyeok, Park, O. Ok, A. J. Heeger,: Angew. Chem. Vol. 50(2011), pp.5519-5523.

Google Scholar

[9] You, J., Li, X., Xie, F. -x., Sha, W. E. I., Kwong, J. H. W., Li, G., Choy, W. C. H. and Yang, Y.: Adv. Energy Mater. Vol 2(2012), p.1203–1207.

Google Scholar

[10] Tan, Kim-Shih, Chuang, M. K. Chen, F. Chung, C.S. Hsu,: Applied Materials & Interfaces. Vol. 5(2013), pp.12419-12424.

Google Scholar

[11] Jianyong, Ouyang,: Org. Electron. Vol. 14(2013), pp.1458-1466.

Google Scholar

[12] Kim, W., Cha, B. G., Kim, J. K., Kang, W., Kim, E., Ahn, T. K., Wang, D. H., Du, Q. G., Cho, J. H., Kim, J. and Park, J. H.: ChemSusChem, Vol 7(2014), p.3452–3458.

DOI: 10.1002/cssc.201402511

Google Scholar

[13] Bonan Kang, L.W. Tan , S.R.P. Silva , Org. Electron. Vol. 10 (2009), p.1178–1181.

Google Scholar

[14] Yang, X., Chueh, C. -C., Li, C. -Z., Yip, H. -L., Yin, P., Chen, H., Chen, W. -C. and Jen, A. K. -Y.: Adv. Energy Mater. Vol 3(2013), p.666–673.

Google Scholar

[15] A.K.K. Kyaw, D.H. Wang, A. J. Heeger, Nano Lett. Vol. 13(2013), p.3796−3801.

Google Scholar

[16] Mana Toma, Gabriel Loget, and Robert M. Corn: Nano Lett. Vol. 13(2013), p.6164−6169.

Google Scholar

[17] Xiaoqiang Chen, Lijian Zuo, Weifei Fu, Quanxiang Yan, Congcheng Fan, Hongzheng Chen: Solar Energy Materials & Solar Cells. Vol. 111 (2013), p.1–8.

DOI: 10.1016/j.solmat.2012.12.016

Google Scholar

[18] Pandey, A. K., Aljada, M., Velusamy, M., P. L. and Meredith, P.: Adv. Mater. Vol. 24 (2012), p.1055–1061.

Google Scholar