Gold Catalysts on TiO2-Modified Silica Gel for the Selective Cyclopentane Oxidation to Cyclopentanone

Article Preview

Abstract:

Amorphous silica gel was modified by titania via an impregnation-surface hydrolysis approach and used as the support for preparing gold catalysts through an direct anion exchange method. These supported gold catalysts were characterized by XRD and TEM, and applied for the catalytic cyclopentane oxidation to cyclopentanone using oxygen in the absence of any solvent and initiator. The catalyst with a loading of 0.1wt.% gold and 10wt.% TiO2 exhibited 7.2% cyclopentane conversion and 77.4% selectivities (including cyclopentanone and cyclopentanol) under the reaction conditions of 145°C, 2.0 MPa and 3 h. All the gold catalysts studied are very active in selective cyclopentane oxidation, and their high activities can be attributed to well dispersion and nanometer effect of gold particles within the catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-81

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ján Vojtko, Petroleum & Coal, 47 (2005) 1-4.

Google Scholar

[2] M. Alas, M. Crochemore, U.S. Patent 5, 856, 581 (1999).

Google Scholar

[3] O. Nagashima, S. Sato, Applied Catalysis A: General, 312 (2006) 175-180.

Google Scholar

[4] S.Z. G, Z.H. X, Fine Chemicals, 21 (2004) 389-391.

Google Scholar

[5] N. Krystyna, D. Donalita, Applied Catalysis A, 166 (1997) 75-87.

Google Scholar

[6] K.A. Dubkov, G.I. Panov, Catalysis Letters, 77 (2002) 197-205.

Google Scholar

[7] J. Połtowicz, J. Haber, Journal of Molecular Catalysis A, 220 (2004) 43-51.

Google Scholar

[8] K. Pamin, G. Pozzi, Catalysis Communications, 39 (2013) 102-105.

Google Scholar

[9] M.N. Kopylovich, T.C.O. Mac Leod, M. Haukka, Journal of Inorganic Biochemistry, 115 (2012) 72-77.

Google Scholar

[10] G.S. Mishra, J.J. R, F. D. Silva, Journal of Molecular Catalysis A, 265 (2007) 59-69.

Google Scholar

[11] R.R. Fernandes, M.V. Kirillova, J.A.L. da Silva, Applied Catalysis A: General, 352 (2009) 107-112.

Google Scholar

[12] E.I. Karasevich, Y.K. Karasevich, Kinetics and Catalysis, 43 (2002) 19-28.

DOI: 10.1023/a:1014284609614

Google Scholar

[13] L.K. Volkova, V.P. Tretyakov, E.S. Rudakov, Kinetics and Catalysis, 36 (1995) 373.

Google Scholar

[14] C. Jin, W.B. Fan, Y.J. Jia, Journal of Molecular Catalysis A, 249 (2006) 23-30.

Google Scholar

[15] K. Teramura, T. Tanaka, T. Hosokawa, Catalysis Today, 96 (2004) 205-209.

Google Scholar

[16] R. Skouta, J.L. Chao, Tetrahedron, 64 (2008) 4917-4938.

Google Scholar

[17] L.X. Xu, C.H. He, M.Q. Zhu, Catalysis Communications, 9 (2008) 816-820.

Google Scholar

[18] S. Ivanova, C. Petit, V. Pitchon, Applied Catalysis A: General, 267 (2004) 191-201.

Google Scholar

[19] G. B. Shulpin, D. Attanasio, L. Suber, Journal of Catalysis, 142 (1993) 147.

Google Scholar

[20] S. Adjimi, N. Sergent, J.C. Roux, Applied Catalysis B: Environmental, 154 (2014) 123-133.

Google Scholar

[21] L.X. Xu, C.H. He, M.Q. Zhu, Catalysis Letters, 114 (2007) 202-205.

Google Scholar