[1]
S. Boulila, K. Mnafgui, , H. Oudadesse , H. El Feki, A. El Feki, Comparison of three types of physical aspects of a carbonated hydroxyapatite biomaterial: Study implantaion in vivo in rats of Wistar, strain and physiological & physicochemical explorations, Journal of Advances in Chemistry. 8 (2014).
DOI: 10.24297/jac.v8i2.4042
Google Scholar
[2]
W. Pon-On, N. Charoenphandhu, J. Teerapornpuntakit, J. Thongbunchoo, N. Krishnamra, I.M. Tang, Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications, Materials Science and Engineering C. 38 (2014).
DOI: 10.1016/j.msec.2014.01.040
Google Scholar
[3]
H.H. Pham, P. Luo, F. Génin, A.K. Dash, Synthesis and characterization of HA-ciprofloxacin delivery systems by precipitation and spray drying technique, AAPS Pharm Sci Tech. 3 (2002) 1–9.
DOI: 10.1208/pt030101
Google Scholar
[4]
M. Sundar Raj, V. Arkin, H. Adalarasu, M. Jagannath, Nanocomposites Based on Polymer and Hydroxyapatite for Drug Delivery Application, Indian Journal of Science and Technology. 6 (2013).
Google Scholar
[5]
V. Mouriño, J.P. Cattalini, J.A. Roether, P. Dubey, I. Roy, A.R. Boccaccini, Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering, Expert Opin. Drug Deliv. 10 (2013) 1353 – 1365.
DOI: 10.1517/17425247.2013.808183
Google Scholar
[6]
E. Dietrich, H. Oudadesse, A. Lucas-Girot, M. Mami, In vitro bioactivity of melt-derived glass 46S6 doped with magnesium, J Biomed Mater Res A. 88 (2009) 1087-1096.
DOI: 10.1002/jbm.a.31901
Google Scholar
[7]
M. Mabrouk, M. Mostafa, H. Oudadesse, A.M. Gaafar, M.I. El-Gohary, Fabrication, Characterization and Drug Release of Ciprofloxacin Loaded Porous Polyvinyl Alcohol/Bioactive Glass Scaffold for Controlled Drug Delivery, Bioceramics Development and Applications. (2014).
DOI: 10.4172/2090-5025.s1-009
Google Scholar
[8]
K. Jung, M. Lein, Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis, Biochimica et Biophysica Acta 1846, (2014) 425–438.
DOI: 10.1016/j.bbcan.2014.09.001
Google Scholar
[9]
C. Gao, Q. Gao, Y. Li, M.N. Rahaman, A. Teramoto, K. Abe, Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration, Journal of Biomedical Materials Research Part A. 100A(5) (2012).
DOI: 10.1002/jbm.a.34072
Google Scholar
[10]
A.M. Halawa, Effect of Ciprofloxacin on the Articular Cartilage and Epiphyseal Growth Plate Cartilage in the Growing Albino Rats and the Possible Protective Role of Vitamin E (α –Tocopherol): A Histological and Morphometric Study, Egypt. J. Histol. 33 (2010).
DOI: 10.21276/aanat.2015.1.1.4
Google Scholar
[11]
S. Jebahi, H. Oudadesse, H. El Feki, T. Rebai, H. Keskes, P. Pellen, A. El Feki Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats, J Appl Biomed. 10 (2012) 195–209.
DOI: 10.2478/v10136-012-0009-8
Google Scholar
[12]
C. Castro, E. Sanchez, A. Delgado, I. Soriano, P. Nunez, A. Perera, C. Evora, Ciprofloxacin implants for bone infection. In vitro–in vivo characterization, J. of Controlled Release. 9 (2003) 3341– 354.
DOI: 10.1016/j.jconrel.2003.09.004
Google Scholar
[13]
J.R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomaterialia. 9 (2013) 4457–4486.
DOI: 10.1016/j.actbio.2012.08.023
Google Scholar
[14]
L.L. Hench, J.M. Polak, Third-generation biomedical materials, Science. 295 (2002) 1014–7.
Google Scholar
[15]
M. Grunewald, I. Avraham, Y. Dor, E. Bachar-Lustig, A. Itin, S. Yung, VEGF induced adult neovascularization: recruitment, retention, and role of accessory cells, Cell. 124 (2006) 175–89.
DOI: 10.1016/j.cell.2005.10.036
Google Scholar