Blunt V-Notch Brittle Fracture: An Improved Finite Fracture Mechanics Approach

Article Preview

Abstract:

The coupled Finite Fracture Mechanics (FFM) criterion is applied to investigate brittle fracture in rounded V-notched samples under mode I loading. The approach is based on the contemporaneous fulfilment of a stress requirement and the energy balance, the latter being implemented on the basis of a recently proposed analytical expression for the stress intensity factor. Results are presented in terms of the critical crack advance and the apparent generalized fracture toughness, i.e. the unknowns related to the system of two equations describing the FFM criterion. A validation of the theory is performed by employing varying root radius notched, as-quenched, AISI 4340 steel specimens fracture results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-244

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.J. Gomez, M. Elices: Int. J. Fract. Vol. 127 (2004), pp.239-264.

Google Scholar

[2] D. Taylor: Eng. Fract. Mech. Vol. 71 (2004), pp.2407-2416.

Google Scholar

[3] N. Pugno, B. Peng B and H.D. Espinosa: Int. J. Solids Struct. Vol. 42 (2004), pp.647-661.

Google Scholar

[4] P. Lazzarin, F. Berto: Int. J. Fract. Vol. 135 (2005), pp.161-185.

Google Scholar

[5] F.J. Gomez, G.V. Guinea and M. Elices: Int. J. Fract. Vol. 141 (2006), pp.99-113.

Google Scholar

[6] M.R. Ayatollahi, A.R. Torabi: Mater. Design Vol. 31 (2010), pp.60-67.

Google Scholar

[7] E. Barati, Y. Alizadeh: Scientia Iranica Vol. 19 (2012), pp.491-502.

Google Scholar

[8] D. Leguillon, Z. Yosibash: Int. J. Fract. Vol. 122 (2003), pp.1-21.

Google Scholar

[9] Z. Yosibash, A. Bussiba and I. Gilad: Int. J. Fract. Vol. 125 (2004), pp.307-333.

Google Scholar

[10] D. Picard, D. Leguillon and C. Putot: J. Eur. Ceram. Soc. Vol. 26 (2006), pp.1421-1427.

Google Scholar

[11] A. Carpinteri, P. Cornetti and A. Sapora: Int. J. Fract. Vol. 172 (2011), pp.1-8.

Google Scholar

[12] A. Carpinteri, P. Cornetti and A. Sapora: Fatigue Fract. Eng. Mater. Struct. Vol. 35 (2012), pp.451-457.

Google Scholar

[13] A. Carpinteri, P. Cornetti, N. Pugno, A. Sapora and D. Taylor: Eng. Fract. Mech. Vol. 75 (2008), pp.1736-1752.

Google Scholar

[14] S. Filippi, P. Lazzarin and R. Tovo: Int. J. Solid Struct. Vol. 39 (2002), pp.4543-4565.

Google Scholar

[15] P. Lukas: Eng. Fract. Mech. Vol. 26 (1987), pp.471-473.

Google Scholar

[16] R.X. Xu, J.C. Thompson and T.H. Topper: Fatigue Fract. Eng. Mater. Struct. Vol. 22 (1995), pp.885-95.

Google Scholar

[17] A. Sapora, P. Cornetti and A. Carpinteri: Int. J. Fract. Vol. 187 (2014), pp.285-291.

Google Scholar

[18] R. Roberti, G. Silva, B. De Benedetti and D. Firrao: Metall. Ital. Vol. 70 (1978), pp.449-455.

Google Scholar

[19] D. Firrao, J.A. Begley, G. Silva, R. Roberti and B. De Benedetti: Metall. Trans. A, Vol. 13A (1982), pp.1003-1013.

Google Scholar

[20] K. Tsuji, K. Iwase and K. Ando: Fatigue Fract. Eng. Mater. Struct. Vol. 22 (1999), pp.509-517.

Google Scholar

[21] P. Cornetti, N. Pugno, A. Carpinteri and D. Taylor: Eng. Fract. Mech. Vol. 73 (2006), p.2021-(2033).

Google Scholar

[22] A. Carpinteri, P. Cornetti, N. Pugno, A. Sapora and D. Taylor: Struct. Eng. Mech. Vol. 32 (2009), pp.609-620.

Google Scholar

[23] L. Susmel, D. Taylor: Eng. Fract. Mech. Vol. 75 (2008), pp.4410-4421.

Google Scholar

[24] D. Taylor, P. Cornetti and N. Pugno: Eng. Fract. Mech. Vol. 72 (2005), pp.1021-1038.

Google Scholar

[25] E. Priel, Z. Yosibash and D. Leguillon: Int. J. Fract. Vol. 149 (2008), pp.143-73.

Google Scholar