Numerical Modelling of the Interaction Macro–Multimicrocracks in a Pipe under Tensile Stress

Article Preview

Abstract:

In this paper, the evaluation of the SIFof a macrocrack in interaction with one or several microcracks in a material containing a geometrical defect was investigated. Several configurations were considered in order to apprehend the mechanisms induced by the interaction effect and in particular the effects of reduction and/or amplification of the stress field between macro and single or multiple microcracks. The obtained results show that, macro–microcrack spacing is an important parameter if the microscopic crack is relatively close to the macrocrack-tip. The macrocrack has the tendency to accelerate as it propagates towards the microcrack. When the relative distance characterizing this spacing is higher than 0.3, the interaction effect can be neglected and the SIF remains unchanged for both defect types. When this ratio is lower than 0.3, the interaction between the two defects becomes significant and the stress intensity factor at the macrocrack tip strongly increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-250

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ouinas D., Bachir Bouiadjra B., Benderdouche N., Computational Materials Science 43 (2008) 1155–1159.

DOI: 10.1016/j.commatsci.2008.03.014

Google Scholar

[2] Ouinas D., Serier B., Bachir Bouiadjra B., Achour T., Modélisation de l'effet de l'entailles dans une plaque sollicitée en traction, JUSTA, Université de Guelma, 24 et 25 Mai 2003-Algérie.

DOI: 10.1051/meca:2005064

Google Scholar

[3] Hoagland, R. G., Hahn, G. T. and Rosenfiend, A.R., Influence on microstructure on the fracture propagation in roch. Roc. Mech. (1973) 5, 77-10.

Google Scholar

[4] Claussen, N., Fracture toughness of Al2O3 with an unstabilized ZrC2 dispersed phase. J. Am. Ceram. Soc. 59 (1976) 49-51.

Google Scholar

[5] Laures, J.P. and Kachanov,M., Three. International Journal of Fracture 48, (1991) 255–279.

Google Scholar

[6] Kachanov M., Elastic solids with many cracks and related problems. In: J.W. Hutchinson, T.Y. Wu (eds) Advances in Applied Mechanics vol 30, (1993) p.259–445.

DOI: 10.1016/s0065-2156(08)70176-5

Google Scholar

[7] Tamuzs, V.P.; Petrova, V.E. On macrocrack-microdefect interaction. Int. Appl. Mech. 38 (2002) No. 10, 1157-1177.

Google Scholar

[8] Bachir Bouiadjra B., Benguediab M., Elmeguenni M., Belhouari M., Serier B., Ait Abdel Aziz M., Computational Materials Science 42 (2008) 100–106.

DOI: 10.1016/j.commatsci.2007.06.012

Google Scholar

[9] Chen D.H., Nakamichi S., Int. J. Fracture 82 (1996) 131–152.

Google Scholar

[10] Melander A., Int. J. Fatigue 19 (1997) 13–24.

Google Scholar

[11] Schive J., Fatigue Engng. Mater. Struct. 5 (1982) 77–90.

Google Scholar

[12] Glinka G., Engng. Fract. Mech. 22 (1983) 839–845.

Google Scholar

[13] Kujawski D., Fatigue Fract., Engng. Mater. Struct. 14 (1991) 953–965.

Google Scholar

[14] Lukas P., Engng. Fract. Mech. 26 (1987) 471–473.

Google Scholar

[15] J.C. Newman Jr, Phillips E.P., R.A. Everett Jr, Mech. Mat. Branch, NASA Langley Research Center Hampton, Virginia USA, 23681, NASA/TM-1999-209329.

Google Scholar

[16] ABAQUS Finite Element Program, ABAQUS/Standard 6. 7. 1. Hibbit, Karlsson and Sorensen, Inc. Pawtuket, USA, (2006).

Google Scholar

[17] Henshel RD, Shaw KG., Crack tip finite elements are unnecessary. Int J. Num. Meth. Eng 9 (1975) 495-507.

Google Scholar

[18] Ouinas D., Bachir Bouiadjra B., Benderdouche N., Computational Materials Science 43 (2008) 1155–1159.

DOI: 10.1016/j.commatsci.2008.03.014

Google Scholar