Interfacial and Demulsification Properties of Janus Type Magnetic Nanoparticles

Article Preview

Abstract:

Water-in-oil emulsions are formed during crude oil production. Some natural surfactants (asphaltenes) aggregates are known to form viscoelastic film preventing coalescence of emulsified water droplets. The present research work investigates the interfacial properties and demulsifying capacity of Janus type magnetic nanoparticles. poly (methylmethacrylate-acrylicacid-divinylbenzene) iron oxide Janus nanoparticles with Interfacially active P(MMA-AA-DVB) block copolymer and iron oxide (magnetic) shows excellent interfacial and magnetic properties. Experiments performed at the oil-water interface indicates that Janus particles adsorb at the oil - water interface and separate the emulsified water from the external magnetic field. The external magnetic play important role demulsification of magnetically tagged emulsified water droplets, producing smaller volumes of sludge and decrease the hydrocarbon loss to waste aqueous phase. The chemical bonding of interfacially active P(MMA-AA-DVB) grafted with magnetic nanoparticles and the magnetic property of P(MMA-AA-DVB)/Fe3O4 allowed the used Janus nanoparticles to be readily recycled by magnetic separation and regenerated by solvent washing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-268

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Miguel Rondón, Juan Carlos Pereira, Patrick Bouriat, Alain Graciaa, Jean Lachaise, and Jean-Louis Salager:Energy & Fuels 22 (2008), pp.702-707.

Google Scholar

[2] Stanford. L. A. Rodgers. R. P. Marshall. A. G: Energy Fuels 21(2007), pp.963-972.

Google Scholar

[3] Goldszal. A. Bourrel. M: Ind. Eng. Chem. Res. 39(2000), pp.2746-2751.

Google Scholar

[4] Groenzin. H. Mullins. O. C: Energy Fuels 14 (2000), pp.677-684.

Google Scholar

[5] Mullins. O. C: SPE J. 13(2008), p.48–57.

Google Scholar

[6] Stark. J. L. Asomaning. S. Energy Fuels 19(2005), pp.1342-1345.

Google Scholar

[7] Rondón, M, Pereira J. C. Bouriat. P. Graciaa. A. Lachaise. J. Salager. J. L: Energy Fuels 22 (2008), pp.702-707.

DOI: 10.1021/ef7003877

Google Scholar

[8] Kim. Y. H. Wasan. D. T. Breen P. J: Colloids Surfaces 95(1995), pp.235-247.

Google Scholar

[9] Xianhua Feng, Paolo Mussone, Song Gao, Shengqun Wang, Shiau-Yin Wu, Jacob H. Masliyah, and Zhenghe Xu: Langmuir 26(5) (2010), pp.3050-3057.

Google Scholar

[10] G.Y. Liu, X.L. Yang, Y.M. Wang: Poly. Int 7(56) (2007), pp.905-914.

Google Scholar

[11] H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen, Y.D. Li: Angew. Chem. Int. Ed 18(44) (2005), p.2782.

Google Scholar