Ultrananocrystalline Diamond/Amorphous Carbon Composite Films Prepared by Laser Ablation of Graphite in Nitrogen and Hydrogen Atmosphere

Article Preview

Abstract:

Nitrogenated ultrananocrystalline diamond/hydrogenated amorphous carbon composite films were prepared in hydrogen and nitrogen mixed-gas atmospheres by pulsed laser deposition using graphite targets. The electrical conductivity in n-type conduction remarkably increase at room temperature with an increase in the nitrogen content. In the nitrogen content range from 7.9 to 10.4 at.%, the electrical conductivity is dramatically decreased and this accompanied by the disappearance of diamond grains in the films. Grain boundaries owing to the existence of diamond grains embedded in UNCD/a-C:H films, which is structural specific to UNCD/a-C:H, should play a significant role in the large electrical conductivity enhancement by nitrogen doping. The X-ray photoemission and near-edge X-ray fine-absorption spectroscopic measurements could not detect an evident difference in the spectra that explain the sudden irregular change in the electrical conductivity

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-279

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Achatz, J. A. Garrido, M. Stutzmann, O. A. Williams, D. M. Gruen, A. Kromka, and D. Steinmüller, Appl. Phys. Let. 88 (2006) 101908.

DOI: 10.1063/1.2183366

Google Scholar

[2] M. Rusop, T. Soga, and T. Jimbo, Diamond Relat. Mater. 13 (2004) 2187.

Google Scholar

[3] T. Tsuyoshi Yoshitake, A. Nagano, M. Itakura, N. Kuwano, T. Hara, and K. Nagayama, Jpn. J. Appl. Phys. 46 (2007) L936.

DOI: 10.1143/jjap.46.l936

Google Scholar

[4] T. Hara, T. Yoshitake, T. Fukugawa, H. Kubo, M. Itakura, N. Kuwano, Y. Tomokiyo, and K. Nagayama, Diamond Relat. Mater. 15 (2006) 649.

DOI: 10.1016/j.diamond.2005.12.015

Google Scholar

[5] A. Nagano, T. Yoshitake, T. Hara, K. Nagayama, Diamond Relat. Mater. 17 (2008) 1199-1202.

Google Scholar

[6] K. Hanada, T. Nishiyama, T. Yoshitake, and K. Nagayama, J. Nanomater. 2009 (2009) 901241.

Google Scholar

[7] S. Ohmagari, T. Yoshitake, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, T. Hara, and K. Nagayama, Jpn. J. Appl. Phys. 49 (2010) 031302.

DOI: 10.1143/jjap.49.031302

Google Scholar

[8] Y. Bar-Yam and T. D. Moustakas, Nature 342 (1989) 786.

Google Scholar

[9] S. Al-Riyami, S. Ohmagari, and T. Yoshitake, Diamond Relat. Mater. 19 (2010) 510.

Google Scholar

[10] S. Al-Riyami, S. Ohmagari, and T. Yoshitake, Appl. Phys. Express 3 (2010) 115102.

Google Scholar

[11] S. Al-Riyami, S. Ohmagari, and T. Yoshitake, Jpn. J. Appl. Phys. 50 (2011) 08JD05.

Google Scholar

[12] S. Al-Riyami, S. Ohmagari, and T. Yoshitake, Diamond Relat. Mater. 20, (2011) 1072.

Google Scholar

[13] T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa, and O. Shinomura, Jpn. J. Appl. Phys. 46 (1992) 6031.

Google Scholar

[14] T. Okazaki and K. Tosaka, Jpn. J. Appl. Phys. 48 (2005) L1463.

Google Scholar

[15] K. Kanda, I. Igaki, R. Kometani, S. Matsui, and H. Ito, Diamond Relat. Mater. 17 (2008) 1755.

Google Scholar

[16] I. Jimenez, W. M. Tong, D. K. Shuh, B. C. Holloway, M. A. Kelly, P. Pianetta, L. J. Terminello, and F. J. Himpsel, Appl. Phys. Lett. 74 (1999) 2620.

Google Scholar