Molecular Dynamics Simulation of the Thermal Conductivity of Silicon-Germanene Nanoribbon (SiGeNR): A Comparison with Silicene Nanoribbon (SiNR) and Germanene Nanoribbon (GeNR)

Article Preview

Abstract:

This study examines the nature of thermal transport properties of single layer two-dimensional honeycomb structures of silicon-germanene nanoribbon (SiGeNR), silicene nanoribbon (SiNR) and germanene nanoribbon (GeNR) which have not yet been characterized experimentally. SiGeNR, SiNR and GeNR are the allotropes of silicon-germanium, silicon and germanium, respectively, with sp2 hybridization. The thermal conductivity of the materials has been investigated using Tersoff potential through LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) by performing the molecular-dynamics simulations. The temperature is varied (50 K, 77 K, 150 K, 300 K, 500 K, 700 K, 1000 K, and 1200 K) with fixed nanoribbon dimension of 50 nm × 10 nm. The length is also varied (10 nm, 20 nm, 30 nm, 40 nm, and 50 nm) while the temperature is fixed at room temperature and the width is also fixed at 10 nm. The obtained results showed that the thermal conductivity of SiGeNR at room temperature is approximately 10 times higher than GeNR and approximately 6 times higher compared to SiNR. The thermal conductivity increases as the temperature is increased from 50 K – 300 K, and as the temperature is further increased, the thermal conductivity decreases with temperature. Moreover, the thermal conductivity in SiGeNR, SiNR, and GeNR increases as the length is being increased. Predicting new features of SiGeNR, SiNR and GeNR open new possibilities for nanoelectronic device applications of group IV two-dimensional materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-289

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Xu, T. Liang, M. Shi and H. Chen, Graphene-Like Two Dimensional Materials, Chem Rev. 113 (2013), p.3766.

Google Scholar

[2] K. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451-10453 (2005).

DOI: 10.1073/pnas.0502848102

Google Scholar

[3] S. Stankovich, D. Dikin, G. Dommett, K. Kohlhaas, E. Zimney, E. Stach, R. Piner, S. Nguyen and R. Ruoff, Graphene-based composite materials, Nature 442, 282-286 (2006).

DOI: 10.1038/nature04969

Google Scholar

[4] Y. Hancock, The 2010 Nobel Prize in physics – ground-breaking experiments on graphene, J. Phys. D: Appl. Phys. 44 (2011) 473001.

DOI: 10.1088/0022-3727/44/47/473001

Google Scholar

[5] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet and B. Aufray, Epitaxial Growth of a Silicene Sheet, Appl. Phys. Lett. 97, 223109 (2010).

DOI: 10.1063/1.3524215

Google Scholar

[6] S. Lebegue and O. Eriksson, Electronic structure of two-dimensional crystals from ab-initio theory, Phys. Rev. B 79 (2009) 115409.

Google Scholar

[7] H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger and S. Ceraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First principles calculations, Phys. Rev. B 80 (2009) 155453.

DOI: 10.1103/physrevb.80.155453

Google Scholar

[8] K. Yang, S. Cahangirov, A. Cantarero, A. Rubio and R. D'Agosta, Thermoelectric properties of atomic-thin silicene and germanene nanostructures, Phys. Rev. B 89 (2014) 125403.

DOI: 10.1103/physrevb.89.125403

Google Scholar

[9] D. Gray, A. McCaughan, B. Mookerji, Crystal structure of graphite, graphene and silicon (2009).

Google Scholar

[10] Information on www. codeblocks. org.

Google Scholar

[11] A. Kumar, Molecular Dynamics Simulation (2013).

Google Scholar

[12] P. Schelling, S. Phillpot and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B 65 (2002) 144306.

DOI: 10.1103/physrevb.65.144306

Google Scholar

[13] E. Pop, V. Varshney and A. Roy, Thermal properties of graphene: Fundamentals and applications, MRS 37 (2012) 203.

Google Scholar

[14] X. Xu et al., Length-dependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5: 3689 (2014).

Google Scholar

[15] H. Xie, M. Hu and H. Bao, Thermal conductivity of silicene from first-principles, Appl. Phys. Lett. 104 (2014) 131906.

Google Scholar

[16] X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin and G. Su, Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential, Phys. Rev B 89 (2014) 054310.

DOI: 10.1103/physrevb.89.054310

Google Scholar

[17] X. Gu and R. Yang, First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene (2014).

Google Scholar

[18] B. Qiu and X. Ruan, Reduction of spectral phonon relaxation times from suspended to supported graphene, Appl. Phys. Lett. 100 (2012) 193101.

DOI: 10.1063/1.4712041

Google Scholar

[19] C. Gilmore, Materials science and engineering properties, SI edition, 1st edition, Cengage Learning, 2014, p.149.

Google Scholar

[20] D.L. Nika, E.P. Pokatilov, A.S. Askerov and A.A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79 (2009) 155413.

DOI: 10.1103/physrevb.79.155413

Google Scholar

[21] B. Liu, C. Reddy, J. Jiang, H. Zhu, J. Baimova, S. Dmitriev and K. Zhou, Thermal conductivity of silicene nanosheets and the effect of isotopic doping, J. Phys. D: Appl. Phys. 47 (2014).

DOI: 10.1088/0022-3727/47/16/165301

Google Scholar