Thermal Conductivity of Silicon-Graphene Nanoribbon (SiGNR): An Equilibrium Molecular Dynamics (EMD) Simulation

Article Preview

Abstract:

Silicon-graphene nanoribbon (SiGNR), an allotrope of silicon carbide with sp2 hybridization, gains interest nowadays in the world of two-dimensional materials. In this study, the thermal conductivity of SiGNR is investigated and compared to that of graphene nanoribbon (GNR) and silicene nanoribbon (SiNR). Molecular Dynamics using Tersoff potential through Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) using the Green-Kubo method is employed to predict the thermal conductivity of silicon-graphene materials with armchair chirality. The temperature is varied from 50 K, 77 K, 150 K, 300 K, 500 K, 700 K, 1000 K, 1200 K, and 1500 K with a fixed width of 10 nm and length of 50 nm. The length of the materials is also varied from 10 nm, 20 nm, 30 nm, 40 nm and 50 nm with a fixed temperature of 300 K. Our results show that the thermal conductivity of SiGNR is higher than that of GNR and is approximately 50% larger at room temperature, which may be attributed to the presence of Si atoms inducing larger flexural phonon density of states than in GNR and SiNR. Also, the thermal conductivity of SiGNR follows the same length-dependent behavior of GNR due to its long mean free path. This study presents new insights into the thermal properties of silicon-graphene which will be significant for nanoelectronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-284

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Termentzidis and S. Merabia: Molecular dynamics simulations and thermal transport at the nano-scale (In tech. Publications, China 2012).

Google Scholar

[2] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials: Nat. Mat. 10 (2011) 569-581.

Google Scholar

[3] K.S. Novoselov, V. I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim: A roadmap for graphene, Nature (London) 490 (2012) 192.

DOI: 10.1038/nature11458

Google Scholar

[4] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials: Nat. Mat. 10 (2011) 569-581.

Google Scholar

[5] A.K. Geim and K.S. Novoselov: The rise of graphene, Nat. Mater. 6, 183 (2007).

Google Scholar

[6] F. Schedin, A. K. Geim, S. V. Morozov, E.W. Hill, P. Blake, M. I. Katsnelson, and K.S. Novoselov: Nat. Mater. 6, 652 (2007).

DOI: 10.1038/nmat1967

Google Scholar

[7] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902-907.

DOI: 10.1021/nl0731872

Google Scholar

[8] T.Y. Ng, J. Yeo, Z. Liu: Molecular dynamics simulation of the thermal conductivity of short strips of graphene and silicene: a comparative study, Int J Mech Mater Des 9 (2013) 105-114.

DOI: 10.1007/s10999-013-9215-0

Google Scholar

[9] K. Takeda and K. Shiraishi: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50 (1994) 14916.

DOI: 10.1103/physrevb.50.14916

Google Scholar

[10] X. Zhang, H. Xie, M. Hu, S. Yue, G. Qin, and G. Su: Thermal conductivity of silicene calculated using optimized Stillinger-Weber potential, Phys. Rev. B 89, 054310 (2014).

DOI: 10.1103/physrevb.89.054310

Google Scholar

[11] E. Scalise, M. Houssa, G. Pourtois, B. Broek, V. Afanasev, and A. Stesmans: Vibrational properties of silicene and germanene, Nano Res. 6, 19 (2013).

DOI: 10.1007/s12274-012-0277-3

Google Scholar

[12] H. P. Li and R. Q. Zhang: Vacancy-defect-induced diminution of thermal conductivity in silicene, EPL 99, 36001 (2012).

DOI: 10.1209/0295-5075/99/36001

Google Scholar

[13] H. Xie, M. Hu, and H. Bao: Thermal conductivity of silicene from first-principles, Appl. Phys. Lett. 104, 131906 (2014), p.1.

Google Scholar

[14] X. Lin, Y. Xu, S. Lin, A. A. Hakro, T. Cao, H. Chen, and B. Zhang: Optical and electronic properties of two dimensional graphitic silicon carbide, ArXiv e-prints 1205. 5404(2012) p.2.

Google Scholar

[15] H. Sahin, S. Changirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, and S. Ciraci: Monolayer honeycomb structures of group-IV elements and III-IV binary compounds: First-principles calculations, Phys. Rev. B 80 (2009) 155453.

DOI: 10.1103/physrevb.80.155453

Google Scholar

[16] S. Plimpton: Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. Vol. 117 (1995).

Google Scholar

[17] J. Tersoff: New empirical approach for the structure and energy of covalent bonds, Phys. Rev. B Vol. 37 (1988).

Google Scholar

[18] Information on http: /www. physics. iisc. ernet. in/PH208/Lecture208.

Google Scholar

[19] K. Schelling, S. R. Phillpot and P. Keblinski: Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B Vol 65, 144306.

DOI: 10.1103/physrevb.65.144306

Google Scholar

[20] D. L. Nika, E. P. Pokatilov, A. S. Askerov and A. A. Balandin: Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79 (2009) 155413.

DOI: 10.1103/physrevb.79.155413

Google Scholar

[21] X. Xu, L. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao,S. Bae, C. T. Bui, R. Xie, J. Thong, B.H. Hong, K.P. Loh, D. Donadio, B. Li, B. Ozyilmaz: Length-dependent thermal conductivity in suspended single-layer graphene, Nat Commun. (2014) 4689.

DOI: 10.1038/ncomms4689

Google Scholar

[22] D. L. Nika, S. Ghosh, E.P. Pokatilov, A. A. Balandin: Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl. Phys. Lett. 94 (2009) 203103.

DOI: 10.1063/1.3136860

Google Scholar

[23] L. Lindsay and D.A. Broido: Optimized Tersoff and Brenner empirical parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys. Rev. B 81(2010) 205441.

DOI: 10.1103/physrevb.82.209903

Google Scholar

[24] E. Pop, V. Varshney, and A. Roy: Thermal properties of graphene: Fundamentals and applications. MRS 37 (2012) 203.

Google Scholar