[1]
F. A. Fazzolari, E. Carrera. Coupled thermoelastic effect in free vibration analysis of anisotropic multilayered plates and FGM plates by using a variable-kinematics Ritz formulation. European Journal of Mechanics A/Solids. Vol. 44 (2014).
DOI: 10.1016/j.euromechsol.2013.10.011
Google Scholar
[2]
D. Zhang, Y. Zhou. A theoretical analysis of FGM thin plates based on physical neutral surface. Computational Materials Science Vol. 44 (2008), pp.716-720.
DOI: 10.1016/j.commatsci.2008.05.016
Google Scholar
[3]
Z. Belabed, M. Houari, A. Tounsi, S.R. Mahmoud, O. Anwar Bég. An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Composites: Part B. Vol. 60 (2014), pp.274-283.
DOI: 10.1016/j.compositesb.2013.12.057
Google Scholar
[4]
T. Prakash, M.K. Singha, M. Ganapathi. A finite element study on the large amplitude flexural vibration characteristics of FGM plates under aerodynamic load. International Journal of Non-Linear Mechanics. Vol. 47 (2012), pp.439-447.
DOI: 10.1016/j.ijnonlinmec.2011.08.004
Google Scholar
[5]
N. Duc, P. Cong. Nonlinear post buckling of an eccentrically stiffened thin FGM plate resting on elastic foundations in thermal environments. Thin-Walled Structures. Vol. 75 (2014), pp.103-112.
DOI: 10.1016/j.tws.2013.10.015
Google Scholar
[6]
V. Birman, L. W. Byrd Modelling and analysis of functionally graded materials and structures. Appl. Mech. Rev. Vol. 60 (2007), pp.195-216.
Google Scholar
[7]
X. Xia, H. Shen. Nonlinear vibration and dynamic response of FGM plates with piezoelectric fiber reinforced composite actuators. Composite Structures. Vol. 90 (2009), pp.254-262.
DOI: 10.1016/j.compstruct.2009.03.018
Google Scholar
[8]
T. Prakasha, M.K. Singhaa, M. Ganapathi. Thermal post buckling analysis of FGM skew plates. Engineering Structures. Vol. 30 (2008), pp.22-32.
DOI: 10.1016/j.engstruct.2007.02.012
Google Scholar
[9]
A. Boukhzer, K. EL Bikri and R. Benamar, Homogenization technique for non-linear free vibrations analysis of FGM rectangular plates. Advanced Materials Research Vols. 971-973 (2014) pp.516-533.
DOI: 10.4028/www.scientific.net/amr.971-973.516
Google Scholar
[10]
E. Jaberzadeh, M. Azhari, B. Boroomand. Thermal buckling of functionally graded skew and trapezoidal plates with different boundary conditions using the element-free Galerkin method. European Journal of Mechanics A/Solids. Vol. 42 (2013).
DOI: 10.1016/j.euromechsol.2013.03.006
Google Scholar
[11]
A.K. Upadhyay, K.K. Shukla. Geometrically nonlinear static and dynamic analysis of functionally graded skew plates. Commun Nonlinear Sci Numer Simulat. Vol. 18 (2013), pp.2252-2279.
DOI: 10.1016/j.cnsns.2012.12.034
Google Scholar
[12]
J. Yang, S. Kitipornchai, K.M. Liew. Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates. Comput. Methods Appl. Mech. Engrg. Vol. 192 (2003), pp.3861-3885.
DOI: 10.1016/s0045-7825(03)00387-6
Google Scholar
[13]
R. Benamar, M.M. K. Bennouna and R. G. White, The effects of large vibration amplitudes on the fundamental mode shape of thin elastic structures. Part II fully clamped rectangular isotropic plates. Journal of Sound and Vibration Vol. 164 (1993).
DOI: 10.1006/jsvi.1993.1215
Google Scholar