Annealing Effect on Photoacoustic Characterization of NiSe Metal Chalcogenide Semiconductor Using Phase Signal Analysis

Article Preview

Abstract:

Nickel selenide (NiSe) has been synthesized by solid state method and annealed at five different temperatures, ranging from 323 K to 823 K. The annealing effect on NiSe thermal and carrier transport properties were investigated by using open-cell photoacoustic technique. From analysis of its phase signal-frequency, thermal diffusivity, carrier diffusion coefficient, surface recombination velocity and recombination lifetime of the NiSe was determined. The results show that with increasing of the annealing temperature of NiSe sample, the thermal diffusivity and the carrier diffusion coefficient increased. The surface recombination velocity was decreasing as the annealing temperature of the sample increased. The increasing of annealing temperature of the sample also affected the trend of band-to-band recombination lifetime.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

526-529

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Moloto, N., Moloto, M.J., Coville, N.J., Ray, S.S., J. Cryst. Growth 311 (2009) 3924-3932.

DOI: 10.1016/j.jcrysgro.2009.06.006

Google Scholar

[2] Sobhani, A., Niasari, M.S., Material Research Bulletin 47 (2012) 1905-(1911).

Google Scholar

[3] I. Andrea, L. P. Sirleto Spirito, G. F. Vitale, A. Cutolo, S. Campopiano and L. Zeni, Opt. Lasers Eng. 39 (2003) 219.

DOI: 10.1016/s0143-8166(01)00108-7

Google Scholar

[4] D. M. Todorovic, P. M. Nikolic, D. G. Vasiljevic and M. D. Dramicanin, J. Appl. Phys. 76, (1994), 4012.

Google Scholar

[5] L. C. M. Miranda, App. Opt. 21 (1982) 2923.

Google Scholar

[6] D. M. Todorovic and P. M. Nikolic, Opt. Eng. 36 (1997) 432.

Google Scholar

[7] A. Cruz Orea, I. Delgadillo, H. Vargas, J. L. Pichardo, J. J. Alvarado-Gil and L. C. M. Miranda, Solid St Comm. 100 (1996) 855.

DOI: 10.1016/s0038-1098(96)00468-1

Google Scholar

[8] G. O. Vigil, J. N. Ximello-Quiebras, J. Hernandez, A. G. Contreras-Puente, A. Cruz-Orea, J. G. Mendoza-Alvarez, J. A. Cardona-Bedoya, C. M. Ruiz and V. Bermudez, Semicond. Sci. Technol. 21 (2006) 76.

DOI: 10.1088/0268-1242/21/1/014

Google Scholar

[9] J. Y. C. Liew, Z. A. Talib, W. M. M. Yunus, Z. Zainal, S. A. Halim, K. P. Lim, M. M. Moksin and W. D. W. Yusoff, Jurnal Fizik Malaysia 29 (2008) 3-4.

Google Scholar

[10] A. Pinto Neto, H. Vargas, N. F. Leite and L. C. M. Miranda, Phys. Rev. B 40 (1989) 3924.

Google Scholar

[11] A. Mandelis and P. Hess, Progress in photothermal and photoacoustic Science and technology, eds. A. Mandelis and P. Hess, SPIE Optical Engineering Press, Bellingham, Washington, Vol. IV (2000).

Google Scholar