Synthesis of Graphene via Green Reduction of Graphene Oxide with Simple Sugars

Article Preview

Abstract:

A new carbon material called graphene has been attracting an increasing research interest owing to its unique electrical and mechanical properties that is useful for the various device applications. The synthesis of graphene from graphene oxide usually involves harmful chemical reducing agents that are toxic and undesirable to human and the environment. By avoiding the use of toxic and environmentally harmful reductants, we report a green approach for the reduction of graphene oxide by using reducing sugars to synthesis graphene. Graphite oxide was synthesized from graphite powder using modified Hummers method. Graphite oxide then further exfoliated to graphene oxide by using ultrasonic irradiation. Graphene then was obtained by the mild reduction of graphene oxide with reducing sugars (glucose, lactose and maltose). The structural study of the as-prepared graphene is characterized by Raman spectroscopy and fourier infra red spectroscopy. Raman and FTIR spectra indicates the partial removal of oxygen functional groups from the surface of GO. Characterizations indicate that graphene oxide is successfully reduced to graphene by sugar.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

542-546

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Mater. 6 (2007) 183-191.

Google Scholar

[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[3] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science 313 (2006) 951-954.

DOI: 10.1126/science.1130681

Google Scholar

[4] R.M. Westervelt, Graphene nanoelectronics, Science 320 (2008) 324-325.

Google Scholar

[5] K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene, Science 315 (2007) 1379.

DOI: 10.1126/science.1137201

Google Scholar

[6] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[7] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448 (2007) 457-460.

DOI: 10.1038/nature06016

Google Scholar

[8] D. Li, R.B. Kaner, Graphene-based materials, Science 320 (2008) 1170-1171.

Google Scholar

[9] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[10] J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead P.L. McEuen, Electromechanical resonators from graphene sheets, Science 315 (2007) 490-493.

DOI: 10.1126/science.1136836

Google Scholar

[11] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902-907.

DOI: 10.1021/nl0731872

Google Scholar

[12] S. Park, R.S. Ruoff, Chemical methods for production of graphenes, Nature Nanotech. 4 (2009) 217-224.

DOI: 10.1038/nnano.2009.58

Google Scholar

[13] M. Eizenberg, J.M. Blakely, Carbon monolayer phase condensation on Ni(111), Surf. Sci. 82 (1970) 228-236.

DOI: 10.1016/0039-6028(79)90330-3

Google Scholar

[14] T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, C. Oshima, Anomalous bond of monolayer graphite on transition-metal carbide surfaces, Phys. Rev. Lett. 64 (1990) 768-771.

DOI: 10.1103/physrevlett.64.768

Google Scholar

[15] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8 (2008) 36-41.

DOI: 10.1021/nl071822y

Google Scholar

[16] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97 (2006) 187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[17] G.X. Wang, J. Yang, J.S. Park, X.I. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C 112 (2008) 8192-8195.

DOI: 10.1021/jp710931h

Google Scholar

[18] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095-14107.

DOI: 10.1103/physrevb.61.14095

Google Scholar

[19] J.L. Zhang, H.J. Yang, G.X. Shen, P. Cheng, J.Y. Zhang, S.W. Guo, Reduction of graphene oxide via L-ascorbic acid, Chem. Comm. 46, (2010) 1112-1114.

DOI: 10.1039/b917705a

Google Scholar

[20] S. Bose, T. Kuila, M.E. Uddin, N.H. Kim, A.K.T. Lau, J.H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites, Polymer 2010, 51, 5921-5928.

DOI: 10.1016/j.polymer.2010.10.014

Google Scholar