Effect of CdS Thickness on the Optical and Structural Properties of TiO2/CdS Nanocomposite Film

Article Preview

Abstract:

Efficient modification of energy band gap to absorb visible light in TiO2 semiconductor nanocomposites is challenging. The effect of the varying CdS thickness (50-100 nm) on the structural and optical properties of TiO2/CdS nanocomposite films (NCF) grown by electron beam deposition is reported. The surface morphology and optical behaviors are characterized via XRD, AFM and UV-Vis measurements. The lattice parameters and nanocrystallinity of TiO2/CdS NCF determined from XRD patterns are found to increase gradually with the increase of CdS thickness. The mean particles size estimated using Scherer formula and AFM micrographs lies in the range of 10.29 -59.71 nm for various CdS thickness. The increase in root mean square roughness with the increase of CdS thickness is revealed by AFM micrographs. The UV-Vis measurement shows a significant enhancement in the absorption of NCFs in the range of 340 to 500 nm due to the addition of a small portion of CdS. Interestingly, Our results suggest that the optical and structural properties of TiO2 films can significantly be improved and finely tuned by varying the thicknesses of CdS film useful for applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

547-552

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Chen, M. S. Yao, X. L. Wang, J. J. Feng Effects of Metal Ion Dopants on Absorption Spectra and Photoreactivity of TiO2 Nanoparticles Advanced Materials Research 233 ( 2011) 2722-2731.

DOI: 10.4028/www.scientific.net/amr.233-235.2722

Google Scholar

[2] M. Fusi, E. Maccallini, T. Caruso, C. S. Casari, A. Li Bassi, C. E. Bottani, P. Rudolf, K. C. Prince, R. G. Agostino Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition Surface Science 605 (2011).

DOI: 10.1016/j.susc.2010.10.039

Google Scholar

[3] X. H. Liu, D. Meng, H. Y. Wang, Y. Deng, B. Deng, J. H. Tian The Effects of Doping Micro Palladium on the Structure and Performance of TiO2 Powder Advanced Materials Research 340 (2012) 550-553.

DOI: 10.4028/www.scientific.net/amr.550-553.340

Google Scholar

[4] Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert , J. V. Weber, UV-Vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension J. Photochem. Photobiol. A 183 (2006) 218-224.

DOI: 10.1016/j.jphotochem.2006.03.025

Google Scholar

[5] S Wei, Z Shao, X Lu, Y Liu, L Cao, Y. He Photocatalytic degradation of methyl orange over ITO/CdS/ZnO interface composite films J. Environ. Sci. 21 (2009) 991-996.

DOI: 10.1016/s1001-0742(08)62373-6

Google Scholar

[6] Y. Tachibana, K. Umekita, Y. Otsuka, S. Kuwabata, Charge recombination kinetics at in-situ chemical bath deposited CdS/nanocrystalline TiO2 interface J. Phys. Chem. C 113 (2009) 6852-6858.

DOI: 10.1021/jp809042z

Google Scholar

[7] L. Wu, J. C. Yu, X. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation J. Mol. Cataly A 244 (2006) 25-32.

DOI: 10.1016/j.molcata.2005.08.047

Google Scholar

[8] D. L. Smith, Thin Film Deposition, Principles and Practice, McGraw-HilI Inc, New York , 1995, pp.186-196.

Google Scholar

[9] S. Biswas, M. F. Hossain, T. Takahashi, Y. Kubota, A. Fujishima Photocatalytic activity of high-vacuum annealed CdS–TiO2 thin film Thin Solid Films 516 (2008) 7313-7317.

DOI: 10.1016/j.tsf.2008.01.006

Google Scholar

[10] A. B. Lidiard A note on Manning's relations for concentrated multicomponent alloys Acta Metallurgica, 34 (1986) 1487-1490.

DOI: 10.1016/0001-6160(86)90093-3

Google Scholar

[11] J. Shi, X. Yan, H. Cui, X. Zong, M. Fu, S. Chen, L. Wang Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light J. Mol. Cataly. A 356 (2012) 53-60.

DOI: 10.1016/j.molcata.2012.01.001

Google Scholar

[12] A. K. Tripathi, M. K. Singh, M. C. Mathpal, S. K. Mishra, A. Agarwal, Study of structural transformation in TiO2 nanoparticles and its optical properties Journal of Alloys and Compounds 549 (2013) 114-120.

DOI: 10.1016/j.jallcom.2012.09.012

Google Scholar

[13] D. Xiang, Y. Zhu, C. Cai, Z. He, Z. Liu, D. Yin, J. Luo, A new simple synthesis of CdS nano-particles by composite-molten-salt method and their high photocatalytic degradation activity Phys. E 44 (2011) 733-737.

DOI: 10.1016/j.physe.2011.11.023

Google Scholar

[14] J. Kokai, A. E. Rakhshani Photocurrent spectroscopy of solution-grown CdS films annealed in CdCl2 vapour J. Phys. D 37 (2004) 1970–(1975).

DOI: 10.1088/0022-3727/37/14/012

Google Scholar